On-demand formation of Lewis bases for efficient and stable perovskite solar cells

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sheng Fu, Nannan Sun, Hao Chen, Cheng Liu, Xiaoming Wang, You Li, Abasi Abudulimu, Yuanze Xu, Shipathi Ramakrishnan, Chongwen Li, Yi Yang, Haoyue Wan, Zixu Huang, Yeming Xian, Yifan Yin, Tingting Zhu, Haoran Chen, Amirhossein Rahimi, Muhammad Mohsin Saeed, Yugang Zhang, Qiuming Yu, David S. Ginger, Randy J. Ellingson, Bin Chen, Zhaoning Song, Mercouri G. Kanatzidis, Edward H. Sargent, Yanfa Yan
{"title":"On-demand formation of Lewis bases for efficient and stable perovskite solar cells","authors":"Sheng Fu, Nannan Sun, Hao Chen, Cheng Liu, Xiaoming Wang, You Li, Abasi Abudulimu, Yuanze Xu, Shipathi Ramakrishnan, Chongwen Li, Yi Yang, Haoyue Wan, Zixu Huang, Yeming Xian, Yifan Yin, Tingting Zhu, Haoran Chen, Amirhossein Rahimi, Muhammad Mohsin Saeed, Yugang Zhang, Qiuming Yu, David S. Ginger, Randy J. Ellingson, Bin Chen, Zhaoning Song, Mercouri G. Kanatzidis, Edward H. Sargent, Yanfa Yan","doi":"10.1038/s41565-025-01900-9","DOIUrl":null,"url":null,"abstract":"<p>In the fabrication of FAPbI<sub>3</sub>-based perovskite solar cells, Lewis bases play a crucial role in facilitating the formation of the desired photovoltaic α-phase. However, an inherent contradiction exists in their role: they must strongly bind to stabilize the intermediate δ-phase, yet weakly bind for rapid removal to enable phase transition and grain growth. To resolve this conflict, we introduced an on-demand Lewis base molecule formation strategy. This approach utilized Lewis-acid-containing organic salts as synthesis additives, which deprotonated to generate Lewis bases precisely when needed and could be reprotonated back to salts for rapid removal once their role is fulfilled. This method promoted the optimal crystallization of α-phase FAPbI<sub>3</sub> perovskite films, ensuring the uniform vertical distribution of A-site cations, larger grain sizes and fewer voids at buried interfaces. Perovskite solar cells incorporating semicarbazide hydrochloride achieved an efficiency of 26.1%, with a National Renewable Energy Laboratory-certified quasi-steady-state efficiency of 25.33%. These cells retained 96% of their initial efficiency after 1,000 h of operation at 85 °C under maximum power point tracking. Additionally, mini-modules with an aperture area of 11.52 cm<sup>2</sup> reached an efficiency of 21.47%. This strategy is broadly applicable to all Lewis-acid-containing organic salts with low acid dissociation constants and offers a universal approach to enhance the performance of perovskite solar cells and modules.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"4 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01900-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the fabrication of FAPbI3-based perovskite solar cells, Lewis bases play a crucial role in facilitating the formation of the desired photovoltaic α-phase. However, an inherent contradiction exists in their role: they must strongly bind to stabilize the intermediate δ-phase, yet weakly bind for rapid removal to enable phase transition and grain growth. To resolve this conflict, we introduced an on-demand Lewis base molecule formation strategy. This approach utilized Lewis-acid-containing organic salts as synthesis additives, which deprotonated to generate Lewis bases precisely when needed and could be reprotonated back to salts for rapid removal once their role is fulfilled. This method promoted the optimal crystallization of α-phase FAPbI3 perovskite films, ensuring the uniform vertical distribution of A-site cations, larger grain sizes and fewer voids at buried interfaces. Perovskite solar cells incorporating semicarbazide hydrochloride achieved an efficiency of 26.1%, with a National Renewable Energy Laboratory-certified quasi-steady-state efficiency of 25.33%. These cells retained 96% of their initial efficiency after 1,000 h of operation at 85 °C under maximum power point tracking. Additionally, mini-modules with an aperture area of 11.52 cm2 reached an efficiency of 21.47%. This strategy is broadly applicable to all Lewis-acid-containing organic salts with low acid dissociation constants and offers a universal approach to enhance the performance of perovskite solar cells and modules.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信