Lara M. Lange, Catalina Cerquera-Cleves, Marijn Schipper, Georgia Panagiotaropoulou, Alice Braun, Julia Kraft, Swapnil Awasthi, Nathaniel Bell, Danielle Posthuma, Stephan Ripke, Cornelis Blauwendraat, Karl Heilbron
{"title":"Prioritizing Parkinson’s disease risk genes in genome-wide association loci","authors":"Lara M. Lange, Catalina Cerquera-Cleves, Marijn Schipper, Georgia Panagiotaropoulou, Alice Braun, Julia Kraft, Swapnil Awasthi, Nathaniel Bell, Danielle Posthuma, Stephan Ripke, Cornelis Blauwendraat, Karl Heilbron","doi":"10.1038/s41531-025-00933-0","DOIUrl":null,"url":null,"abstract":"<p>Many drug targets in ongoing Parkinson’s disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (<i>SNCA</i>, <i>LRRK2</i>, <i>GBA1</i>, <i>TMEM175</i>, <i>VPS13C</i>), genes with strong literature evidence supporting a mechanistic link to PD (<i>RIT2, BAG3</i>, <i>SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB</i>), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00933-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many drug targets in ongoing Parkinson’s disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (SNCA, LRRK2, GBA1, TMEM175, VPS13C), genes with strong literature evidence supporting a mechanistic link to PD (RIT2, BAG3, SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.