An imbalance between proliferation and differentiation underlies the development of microRNA-defective pineoblastoma

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Claudette R. Fraire, Kavita Desai, Indumathy Jagadeeswaran, Uma A. Obalapuram, Lindsay K. Mendyka, Veena Rajaram, Teja Sebastian, Yemin Wang, Kenan Onel, Jeon Lee, Stephen X. Skapek, Kenneth S. Chen
{"title":"An imbalance between proliferation and differentiation underlies the development of microRNA-defective pineoblastoma","authors":"Claudette R. Fraire, Kavita Desai, Indumathy Jagadeeswaran, Uma A. Obalapuram, Lindsay K. Mendyka, Veena Rajaram, Teja Sebastian, Yemin Wang, Kenan Onel, Jeon Lee, Stephen X. Skapek, Kenneth S. Chen","doi":"10.1101/gad.352485.124","DOIUrl":null,"url":null,"abstract":"Mutations in the microRNA processing genes <em>DROSHA</em> and <em>DICER1</em> drive several cancers that resemble embryonic progenitors. To understand how microRNAs regulate tumorigenesis, we ablated <em>Drosha</em> or <em>Dicer1</em> in the developing pineal gland to emulate the pathogenesis of pineoblastoma, a brain tumor that resembles undifferentiated precursors of the pineal gland. Accordingly, these mice develop pineal tumors marked by loss of microRNAs, particularly the let-7/miR-98-5p family, and derepression of microRNA target genes. Pineal tumors driven by loss of <em>Drosha</em> or <em>Dicer1</em> mimic tumors driven by <em>Rb1</em> loss, as they exhibit upregulation of S-phase genes and homeobox transcription factors that regulate pineal development. Blocking proliferation of these tumors facilitates expression of pinealocyte maturation markers, with a concomitant reduction in embryonic markers. Select embryonic markers remain elevated, however, as the microRNAs that normally repress these target genes remain absent. One such microRNA target gene is the oncofetal transcription factor <em>Plagl2</em>, which regulates expression of progrowth genes, and inhibiting their signaling impairs tumor growth. Thus, we demonstrate that tumors driven by loss of microRNA processing may be therapeutically targeted by inhibiting downstream drivers of proliferation.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"5 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352485.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations in the microRNA processing genes DROSHA and DICER1 drive several cancers that resemble embryonic progenitors. To understand how microRNAs regulate tumorigenesis, we ablated Drosha or Dicer1 in the developing pineal gland to emulate the pathogenesis of pineoblastoma, a brain tumor that resembles undifferentiated precursors of the pineal gland. Accordingly, these mice develop pineal tumors marked by loss of microRNAs, particularly the let-7/miR-98-5p family, and derepression of microRNA target genes. Pineal tumors driven by loss of Drosha or Dicer1 mimic tumors driven by Rb1 loss, as they exhibit upregulation of S-phase genes and homeobox transcription factors that regulate pineal development. Blocking proliferation of these tumors facilitates expression of pinealocyte maturation markers, with a concomitant reduction in embryonic markers. Select embryonic markers remain elevated, however, as the microRNAs that normally repress these target genes remain absent. One such microRNA target gene is the oncofetal transcription factor Plagl2, which regulates expression of progrowth genes, and inhibiting their signaling impairs tumor growth. Thus, we demonstrate that tumors driven by loss of microRNA processing may be therapeutically targeted by inhibiting downstream drivers of proliferation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信