Structure-Guided Design of ISOX-DUAL-Based Degraders Targeting BRD4 and CBP/EP300: A Case of Degrader Collapse

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Anthony K. Edmonds, Dimitrios-Ilias Balourdas, Graham P. Marsh, Robert Felix, Bradley Brasher, Jeff Cooper, Cari Graber-Feesl, Madhu Kollareddy, Karim Malik, Helen Stewart, Timothy J. T. Chevassut, Ella Lineham, Simon Morley, Oleg Fedorov, James Bennett, Mohan B. Rajasekaran, Samuel Ojeda, Drew A. Harrison, Christopher J. Ott, Andreas C. Joerger, Hannah J. Maple, John Spencer
{"title":"Structure-Guided Design of ISOX-DUAL-Based Degraders Targeting BRD4 and CBP/EP300: A Case of Degrader Collapse","authors":"Anthony K. Edmonds, Dimitrios-Ilias Balourdas, Graham P. Marsh, Robert Felix, Bradley Brasher, Jeff Cooper, Cari Graber-Feesl, Madhu Kollareddy, Karim Malik, Helen Stewart, Timothy J. T. Chevassut, Ella Lineham, Simon Morley, Oleg Fedorov, James Bennett, Mohan B. Rajasekaran, Samuel Ojeda, Drew A. Harrison, Christopher J. Ott, Andreas C. Joerger, Hannah J. Maple, John Spencer","doi":"10.1021/acs.jmedchem.5c00395","DOIUrl":null,"url":null,"abstract":"Degraders with dual activity against BRD4 and CBP/EP300 were designed. A structure-guided design approach was taken to assess and test potential exit vectors on the dual BRD4 and CBP/EP300 inhibitor, ISOX-DUAL. Candidate degrader panels revealed that VHL-recruiting moieties could mediate dose-responsive ubiquitination of BRD4. A panel of CRBN-recruiting thalidomide-based degraders was unable to induce ubiquitination or degradation of target proteins. High-resolution protein cocrystal structures revealed an unexpected interaction between the thalidomide moiety and Trp81 on the first bromodomain of BRD4. The inability to form a ternary complex provides a potential rationale for the lack of degrader activity with these compounds, some of which have remarkable affinities close to those of (+)-JQ1, as low as 65 nM in a biochemical assay, vs 1.5 μM for their POI ligand, ISOX-DUAL. Such a “degrader collapse” may represent an under-reported mechanism by which some putative degrader molecules are inactive with respect to target protein degradation.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"35 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00395","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Degraders with dual activity against BRD4 and CBP/EP300 were designed. A structure-guided design approach was taken to assess and test potential exit vectors on the dual BRD4 and CBP/EP300 inhibitor, ISOX-DUAL. Candidate degrader panels revealed that VHL-recruiting moieties could mediate dose-responsive ubiquitination of BRD4. A panel of CRBN-recruiting thalidomide-based degraders was unable to induce ubiquitination or degradation of target proteins. High-resolution protein cocrystal structures revealed an unexpected interaction between the thalidomide moiety and Trp81 on the first bromodomain of BRD4. The inability to form a ternary complex provides a potential rationale for the lack of degrader activity with these compounds, some of which have remarkable affinities close to those of (+)-JQ1, as low as 65 nM in a biochemical assay, vs 1.5 μM for their POI ligand, ISOX-DUAL. Such a “degrader collapse” may represent an under-reported mechanism by which some putative degrader molecules are inactive with respect to target protein degradation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信