{"title":"Livestock–Crop–Mushroom (LCM) Circular System: An Eco-Friendly Approach for Enhancing Plant Performance and Mitigating Microbiological Risks","authors":"Dong Liu, Yousif Abdelrahman Yousif Abdellah, Tingting Dou, Katharina Maria Keiblinger, Ziyan Zhou, Parag Bhople, Jishao Jiang, Xiaofei Shi, Fengming Zhang, Fuqiang Yu, Baoshan Xing","doi":"10.1021/acs.est.4c12517","DOIUrl":null,"url":null,"abstract":"Mushroom production using agroforestry biowaste is a great green cycling agriculture alternative. Therefore, the current study explored the Livestock–Crop–Mushroom (LCM) circular production model, starting with co-composting of straw and cow manure as a’St’ biofertilizer further used for mushroom cultivation that ultimately produced a’StM’ biofertilizer. The two biofertilizers were tested for their impacts on plant growth and potential microbial risks. The results show significant growth of oats stimulated by biofertiliser use. Both’St’ and’StM’ increased plant biomass, while with the latter, the crude protein content (+5.1%) and root biomass were also higher. Reduced abundances of resistome genes (30%) and pathogens (25%) were observed during the oat growth. Further, metagenomics analysis also indicated a reduction in antibiotic-resistance genes by −20% in soils with oats treated by’St’ and −46% in’StM’ biofertilizer treatment. The’StM’ had a three-fold stronger inhibitory effect on oat rhizosphere soil pathogens than’St’. Moreover, compared to’St’,’StM’ suppressed pathogens in seeds and stems, with specific beneficial biomarker microbes in different plant parts. Overall, the antibiotic resistance gene related to oxytetracycline decreased more than three-fold in the LCM system. This study demonstrates the substantial potential and scalability of the LCM circular system within the agricultural domain.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"22 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12517","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mushroom production using agroforestry biowaste is a great green cycling agriculture alternative. Therefore, the current study explored the Livestock–Crop–Mushroom (LCM) circular production model, starting with co-composting of straw and cow manure as a’St’ biofertilizer further used for mushroom cultivation that ultimately produced a’StM’ biofertilizer. The two biofertilizers were tested for their impacts on plant growth and potential microbial risks. The results show significant growth of oats stimulated by biofertiliser use. Both’St’ and’StM’ increased plant biomass, while with the latter, the crude protein content (+5.1%) and root biomass were also higher. Reduced abundances of resistome genes (30%) and pathogens (25%) were observed during the oat growth. Further, metagenomics analysis also indicated a reduction in antibiotic-resistance genes by −20% in soils with oats treated by’St’ and −46% in’StM’ biofertilizer treatment. The’StM’ had a three-fold stronger inhibitory effect on oat rhizosphere soil pathogens than’St’. Moreover, compared to’St’,’StM’ suppressed pathogens in seeds and stems, with specific beneficial biomarker microbes in different plant parts. Overall, the antibiotic resistance gene related to oxytetracycline decreased more than three-fold in the LCM system. This study demonstrates the substantial potential and scalability of the LCM circular system within the agricultural domain.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.