{"title":"The Relativistic Outflow Driven by the Large-scale Magnetic Field from an Accretion Disk","authors":"Wei Xie and Wei-Hua Lei","doi":"10.3847/1538-4357/adc100","DOIUrl":null,"url":null,"abstract":"Outflows/jets are ubiquitous in a wide range of astrophysical objects, yet the mechanisms responsible for their generation remain elusive. One hypothesis is that they are magnetically driven. Based on general relativistic MHD equations, we establish a formulation to describe the outflows driven by large-scale magnetic fields from the accretion disk in Schwarzschild spacetime. The outflow solution manifests as a contour level of a “Bernoulli” function, which is determined by ensuring that it passes through both the slow and fast magnetosonic points. This approach is a general relativistic extension to the classical treatment of X. Cao & H. C. Spruit. The initial plasma β that permits magnetically driven outflow solutions is constrained, with the slow magnetosonic point above the footpoint setting an upper limit (βb ≲ 2) and the Alfvén point inside the light cylinder setting a lower limit (βb ≳ 0.02). The higher the magnetization, the higher the temperature allowed, leading to relativistic outflows/jets. We investigate the relativistic outflows/jets of several typical objects, such as active galactic nuclei, X-ray binaries, and gamma-ray bursts. The results indicate that all of these phenomena require strongly magnetized, high-temperature outflows as initial conditions, suggesting a potential association between the production of relativistic outflows/jets and corona-like structures.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adc100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Outflows/jets are ubiquitous in a wide range of astrophysical objects, yet the mechanisms responsible for their generation remain elusive. One hypothesis is that they are magnetically driven. Based on general relativistic MHD equations, we establish a formulation to describe the outflows driven by large-scale magnetic fields from the accretion disk in Schwarzschild spacetime. The outflow solution manifests as a contour level of a “Bernoulli” function, which is determined by ensuring that it passes through both the slow and fast magnetosonic points. This approach is a general relativistic extension to the classical treatment of X. Cao & H. C. Spruit. The initial plasma β that permits magnetically driven outflow solutions is constrained, with the slow magnetosonic point above the footpoint setting an upper limit (βb ≲ 2) and the Alfvén point inside the light cylinder setting a lower limit (βb ≳ 0.02). The higher the magnetization, the higher the temperature allowed, leading to relativistic outflows/jets. We investigate the relativistic outflows/jets of several typical objects, such as active galactic nuclei, X-ray binaries, and gamma-ray bursts. The results indicate that all of these phenomena require strongly magnetized, high-temperature outflows as initial conditions, suggesting a potential association between the production of relativistic outflows/jets and corona-like structures.