Mateus R Amorim,Noah R Williams,O Aung,Melanie Alexis Ruiz,Frederick Anokye-Danso,Junia Lara de Deus,Jiali Xiong,Olga Dergacheva,Shannon Bevans-Fonti,Sean M Lee,Jeffrey S Berger,Mark N Wu,Rexford S Ahima,David Mendelowitz,Vsevolod Y Polotsky
{"title":"Targeting melanocortin 4 receptor to treat sleep disordered breathing in mice.","authors":"Mateus R Amorim,Noah R Williams,O Aung,Melanie Alexis Ruiz,Frederick Anokye-Danso,Junia Lara de Deus,Jiali Xiong,Olga Dergacheva,Shannon Bevans-Fonti,Sean M Lee,Jeffrey S Berger,Mark N Wu,Rexford S Ahima,David Mendelowitz,Vsevolod Y Polotsky","doi":"10.1172/jci177823","DOIUrl":null,"url":null,"abstract":"Weight loss medications are emerging candidates for pharmacotherapy of sleep disordered breathing (SDB). A melanocortin receptor 4 (MC4R) agonist, setmelanotide (SET), is used to treat obesity caused by abnormal melanocortin and leptin signaling. We hypothesized that SET can treat SDB in diet induced obese mice. We performed a proof-of-concept randomized crossover trial of a single dose of SET vs vehicle and a two-week daily SET vs vehicle trial, examined co-localization of Mc4r mRNAs with markers of CO2 sensing neurons Phox2b and neuromedin-B in the brainstem, and expressed Cre-dependent designer receptors exclusively activated by designer drugs or caspase in obese Mc4r-Cre mice. SET increased minute ventilation across sleep/wake states, enhanced the hypercapnic ventilatory response (HCVR) and abolished apneas during sleep. Phox2b+ neurons in the nucleus of the solitary tract (NTS) and the parafacial region expressed Mc4r. Chemogenetic stimulation of the MC4R+ neurons in the parafacial region, but not in the NTS, augmented HCVR without any changes in metabolism. Caspase elimination of the parafacial MC4R+ neurons abolished effects of SET on HCVR. Parafacial MC4R+ neurons projected to the respiratory pre-motor neurons retrogradely labeled from C3-C4. In conclusion, MC4R agonists enhance the HCVR and treat SDB by acting on the parafacial MC4R+ neurons.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci177823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Weight loss medications are emerging candidates for pharmacotherapy of sleep disordered breathing (SDB). A melanocortin receptor 4 (MC4R) agonist, setmelanotide (SET), is used to treat obesity caused by abnormal melanocortin and leptin signaling. We hypothesized that SET can treat SDB in diet induced obese mice. We performed a proof-of-concept randomized crossover trial of a single dose of SET vs vehicle and a two-week daily SET vs vehicle trial, examined co-localization of Mc4r mRNAs with markers of CO2 sensing neurons Phox2b and neuromedin-B in the brainstem, and expressed Cre-dependent designer receptors exclusively activated by designer drugs or caspase in obese Mc4r-Cre mice. SET increased minute ventilation across sleep/wake states, enhanced the hypercapnic ventilatory response (HCVR) and abolished apneas during sleep. Phox2b+ neurons in the nucleus of the solitary tract (NTS) and the parafacial region expressed Mc4r. Chemogenetic stimulation of the MC4R+ neurons in the parafacial region, but not in the NTS, augmented HCVR without any changes in metabolism. Caspase elimination of the parafacial MC4R+ neurons abolished effects of SET on HCVR. Parafacial MC4R+ neurons projected to the respiratory pre-motor neurons retrogradely labeled from C3-C4. In conclusion, MC4R agonists enhance the HCVR and treat SDB by acting on the parafacial MC4R+ neurons.