Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration

IF 34.7 1区 医学 Q1 Neuroscience
Floris L. Wuyts, Choi Deblieck, Charlot Vandevoorde, Marco Durante
{"title":"Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration","authors":"Floris L. Wuyts, Choi Deblieck, Charlot Vandevoorde, Marco Durante","doi":"10.1038/s41583-025-00923-4","DOIUrl":null,"url":null,"abstract":"<p>Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"35 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00923-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.

Abstract Image

太空中的大脑:太空探索过程中微重力和宇宙辐射对中枢神经系统的影响
太阳系探索是人类的一项伟大事业。几十年来,太空机构一直在计划载人登月和火星任务。然而,空间中的一些环境压力因素,如微重力和宇宙辐射,给人类探索者带来健康风险。本文综述了微重力和宇宙辐射暴露对中枢神经系统的影响。微重力对大脑提出了挑战,需要发展适应性运动和定向策略来应对感官信息的变化。暴露在微重力环境中也会在一定程度上影响认知功能。最近的MRI结果显示,微重力会影响大脑的结构和功能。飞行后从这些变化中恢复是渐进的,有些持续长达一年。关于宇宙辐射,动物实验表明,大脑对这种压力源可能比在地球上的经历要敏感得多。这可能是由于空间中存在高能重离子,即使是低剂量也会对认知功能产生影响。然而,所有关于空间辐射风险的数据都来自啮齿动物实验,将这些数据外推到人类身上具有高度的不确定性。在概述了上述领域的现有知识之后,我们简要介绍了在未来的太空任务中保护大脑免受微重力和宇宙辐射影响的可能对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Neuroscience
Nature Reviews Neuroscience 医学-神经科学
CiteScore
35.00
自引率
0.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信