Elisabetta Campedelli, Marco Mazzucato, Mattia Parnigotto, Andrea Pedrielli, Christos Gatsios, Denis Badocco, Paolo Pastore, Melanie Timpel, Marco Vittorio Nardi, Christian Durante
{"title":"Ionized Jet Deposition of MoS2 on Gas Diffusion Layer Electrodes for Next Generation Alkaline Electrolyzers","authors":"Elisabetta Campedelli, Marco Mazzucato, Mattia Parnigotto, Andrea Pedrielli, Christos Gatsios, Denis Badocco, Paolo Pastore, Melanie Timpel, Marco Vittorio Nardi, Christian Durante","doi":"10.1002/adsu.202400979","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on optimizing MoS₂ catalysts for the hydrogen evolution reaction (HER) in anion exchange membrane (AEM) electrolyzers. A scalable Ionized Jet Deposition (IJD) technique is employed to deposit MoS₂ onto various carbon supports, exploring the relationship between substrate properties and catalytic performance. The results demonstrate that substrate choice plays a pivotal role in enhancing HER activity and durability. MoS₂ deposited on Freudenberg carbon support exhibited the best catalytic activity, achieving a current density of 10 mA µg⁻¹Mo at −0.48 V versus RHE in an alkaline environment, even with a low catalyst loading (12–49 µg cm⁻<sup>2</sup>). Conversely, sulfur-doped carbon supports showed lower HER activity but superior stability, with a minimal voltage degradation of just 0.025 V after 6 h of testing at 10 mA cm⁻<sup>2</sup>. To further understand these results, bubble evolution studies, and contact angle measurements are conducted. Stable electrodes demonstrated small contact angles and enhanced bubble release from the surface, indicating the importance of hydrophilicity in improving performance and durability. This work highlights the synergy between scalable synthesis techniques and substrate optimization, offering a promising path for advancing cost-efficient, durable electrocatalysts in large-scale AEM electrolyzers for green hydrogen production.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400979","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400979","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on optimizing MoS₂ catalysts for the hydrogen evolution reaction (HER) in anion exchange membrane (AEM) electrolyzers. A scalable Ionized Jet Deposition (IJD) technique is employed to deposit MoS₂ onto various carbon supports, exploring the relationship between substrate properties and catalytic performance. The results demonstrate that substrate choice plays a pivotal role in enhancing HER activity and durability. MoS₂ deposited on Freudenberg carbon support exhibited the best catalytic activity, achieving a current density of 10 mA µg⁻¹Mo at −0.48 V versus RHE in an alkaline environment, even with a low catalyst loading (12–49 µg cm⁻2). Conversely, sulfur-doped carbon supports showed lower HER activity but superior stability, with a minimal voltage degradation of just 0.025 V after 6 h of testing at 10 mA cm⁻2. To further understand these results, bubble evolution studies, and contact angle measurements are conducted. Stable electrodes demonstrated small contact angles and enhanced bubble release from the surface, indicating the importance of hydrophilicity in improving performance and durability. This work highlights the synergy between scalable synthesis techniques and substrate optimization, offering a promising path for advancing cost-efficient, durable electrocatalysts in large-scale AEM electrolyzers for green hydrogen production.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.