A Regimes-Based Approach to Identifying Seasonal State-Dependent Prediction Skill

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Kyle Shackelford, Charlotte A. DeMott, Peter Jan van Leeuwen, Elizabeth A. Barnes
{"title":"A Regimes-Based Approach to Identifying Seasonal State-Dependent Prediction Skill","authors":"Kyle Shackelford,&nbsp;Charlotte A. DeMott,&nbsp;Peter Jan van Leeuwen,&nbsp;Elizabeth A. Barnes","doi":"10.1029/2024JD042917","DOIUrl":null,"url":null,"abstract":"<p>Subseasonal-to-decadal atmospheric prediction skill attained from initial conditions is typically limited by the chaotic nature of the atmosphere. However, for some atmospheric phenomena, prediction skill on subseasonal-to-decadal timescales is increased when the initial conditions are in a particular state. In this study, we employ machine learning to identify sea surface temperature (SST) regimes that enhance prediction skill of North Atlantic atmospheric circulation. An ensemble of artificial neural networks is trained to predict anomalous, low-pass filtered 500 mb height at 7–8 weeks lead using SST. We then use self-organizing maps (SOMs) constructed from 9 regions within the SST domain to detect state-dependent prediction skill. SOMs are built using the entire SST time series, and we assess which SOM units feature confident neural network predictions. Four regimes are identified that provide skillful seasonal predictions of 500 mb height. Our findings demonstrate the importance of extratropical decadal SST variability in modulating downstream ENSO teleconnections to the North Atlantic. The methodology presented could aid future forecasting on subseasonal-to-decadal timescales.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042917","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042917","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Subseasonal-to-decadal atmospheric prediction skill attained from initial conditions is typically limited by the chaotic nature of the atmosphere. However, for some atmospheric phenomena, prediction skill on subseasonal-to-decadal timescales is increased when the initial conditions are in a particular state. In this study, we employ machine learning to identify sea surface temperature (SST) regimes that enhance prediction skill of North Atlantic atmospheric circulation. An ensemble of artificial neural networks is trained to predict anomalous, low-pass filtered 500 mb height at 7–8 weeks lead using SST. We then use self-organizing maps (SOMs) constructed from 9 regions within the SST domain to detect state-dependent prediction skill. SOMs are built using the entire SST time series, and we assess which SOM units feature confident neural network predictions. Four regimes are identified that provide skillful seasonal predictions of 500 mb height. Our findings demonstrate the importance of extratropical decadal SST variability in modulating downstream ENSO teleconnections to the North Atlantic. The methodology presented could aid future forecasting on subseasonal-to-decadal timescales.

Abstract Image

基于制度的季节性状态相关预测技能识别方法
从初始条件获得的亚季节至年代际大气预测技能通常受到大气混沌性质的限制。然而,对于某些大气现象,当初始条件处于特定状态时,亚季-年代际时间尺度上的预测能力有所提高。在本研究中,我们利用机器学习来识别海表温度(SST)状态,从而提高北大西洋大气环流的预测技能。人工神经网络的集合被训练来预测异常,低通滤波500mb高度在7-8周提前使用海温。然后,我们使用从海表温度域中的9个区域构建的自组织地图(SOMs)来检测状态依赖预测技能。SOM是使用整个海表温度时间序列构建的,我们评估哪些SOM单元具有自信的神经网络预测。确定了四种制度,提供500毫巴高度的熟练季节性预测。我们的发现证明了温带年代际海温变率在调节下游ENSO与北大西洋的遥相关中的重要性。所提出的方法有助于未来在亚季节到十年的时间尺度上进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信