CO2 in Ionene–Ionic Liquid Composite Membranes

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ying Chen, Manh-Thuong Nguyen, Jennifer Yao, Kee Sung Han, Sudhir Ravula, Mingyi Zhang, Ying Xia, Eric D. Walter, J. David Bazak, Robert P. Young, Zihua Zhu, Jason E. Bara, Nancy M. Washton, David J. Heldebrant
{"title":"CO2 in Ionene–Ionic Liquid Composite Membranes","authors":"Ying Chen,&nbsp;Manh-Thuong Nguyen,&nbsp;Jennifer Yao,&nbsp;Kee Sung Han,&nbsp;Sudhir Ravula,&nbsp;Mingyi Zhang,&nbsp;Ying Xia,&nbsp;Eric D. Walter,&nbsp;J. David Bazak,&nbsp;Robert P. Young,&nbsp;Zihua Zhu,&nbsp;Jason E. Bara,&nbsp;Nancy M. Washton,&nbsp;David J. Heldebrant","doi":"10.1002/adsu.202400802","DOIUrl":null,"url":null,"abstract":"<p>Ionene – ionic liquid (IL) composites are promising materials for CO<sub>2</sub> separation, yet a molecular-level understanding of their structure and its impact on CO<sub>2</sub> speciation, solubility, rotation, and diffusivity remains unclear. Herein, using multimodal nuclear magnetic resonance (NMR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM), and molecular dynamics (MD) simulations, we reveal that the composites contain IL-rich domains extending across hundreds of nanometres within the ionene matrix, and these bicontinuous domains span the entire membrane depth. CO<sub>2</sub> also absorbs into the ionene matrix, with the distribution between two CO<sub>2</sub> species varying with temperature and time. The rotational correlation times of these two species are on the timescale of 0.1 and 1 ns, respectively. As IL content increases, the ionic domains expand, resulting in higher CO<sub>2</sub> solubility due to enhanced molecular dynamics and increased free volume in both ionene backbones and IL-rich regions. Although CO<sub>2</sub> diffusion in the membranes is an order of magnitude slower than in bulk IL, the activation energy for CO<sub>2</sub> diffusion remains comparable. Ionene-IL composites represent a promising platform for designing CO<sub>2</sub> separation membranes, offering enhanced CO<sub>2</sub>diffusion and selectivity through IL-rich domains, and increased CO<sub>2</sub> solubility and mechanical integrity from the ionene matrix.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400802","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400802","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionene – ionic liquid (IL) composites are promising materials for CO2 separation, yet a molecular-level understanding of their structure and its impact on CO2 speciation, solubility, rotation, and diffusivity remains unclear. Herein, using multimodal nuclear magnetic resonance (NMR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM), and molecular dynamics (MD) simulations, we reveal that the composites contain IL-rich domains extending across hundreds of nanometres within the ionene matrix, and these bicontinuous domains span the entire membrane depth. CO2 also absorbs into the ionene matrix, with the distribution between two CO2 species varying with temperature and time. The rotational correlation times of these two species are on the timescale of 0.1 and 1 ns, respectively. As IL content increases, the ionic domains expand, resulting in higher CO2 solubility due to enhanced molecular dynamics and increased free volume in both ionene backbones and IL-rich regions. Although CO2 diffusion in the membranes is an order of magnitude slower than in bulk IL, the activation energy for CO2 diffusion remains comparable. Ionene-IL composites represent a promising platform for designing CO2 separation membranes, offering enhanced CO2diffusion and selectivity through IL-rich domains, and increased CO2 solubility and mechanical integrity from the ionene matrix.

Abstract Image

离子液体复合膜中的CO2
离子液体(IL)复合材料是一种很有前途的CO2分离材料,但其分子水平的结构及其对CO2形态、溶解度、旋转和扩散的影响尚不清楚。在此,利用多模态核磁共振(NMR)、飞行时间二次离子质谱(ToF-SIMS)、原子力显微镜(AFM)和分子动力学(MD)模拟,我们发现复合材料含有丰富的il结构域,在离子烯基质内延伸数百纳米,这些双连续结构域跨越整个膜深度。CO2也被离子烯基质吸收,两种CO2的分布随温度和时间的变化而变化。这两个物种的旋转相关时间分别在0.1和1ns的时间尺度上。随着IL含量的增加,离子域扩大,由于分子动力学的增强和离子烯骨架和富含IL区域的自由体积的增加,导致CO2溶解度提高。虽然CO2在膜中的扩散比在散装IL中慢一个数量级,但CO2扩散的活化能仍然相当。ionene - il复合材料是设计CO2分离膜的一个很有前途的平台,通过富含il的结构域增强CO2的扩散和选择性,提高CO2在ionene基质中的溶解度和机械完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信