{"title":"Exact WKB in all sectors. Part I. Potentials with degenerate saddles","authors":"Tatsuhiro Misumi, Cihan Pazarbaşı","doi":"10.1007/JHEP04(2025)100","DOIUrl":null,"url":null,"abstract":"<p>We explore the exact-WKB (EWKB) method through the analysis of Airy and Weber types, with an emphasis on the exact quantization of locally harmonic potentials in multiple sectors. The core innovation of our work lies in introducing a novel complexification approach to the energy parameter <i>u</i>, distinct from the common complexification of the (semi-classical) expansion parameter used in Borel summability. This new technique allows for continuous analytical continuation across different sectors of a potential while maintaining the exact quantization condition, even before median summation. By redefining the <i>A</i>-cycle above the potential barrier top, we ensure the quantization condition remains real and, by use of the Stokes automorphism and the median resummation, show that the resurgence structure is preserved across transitions between sectors. Furthermore, we discuss the Weber-type exact-WKB method, offering exact estimates for quantum actions around all types of saddle points, generalizing previous results. Through the analysis of these quantum actions, we reveal the presence of <i>S</i>-duality, facilitating the exchange between perturbative and non-perturbative behaviors, and we conjecture the mapping of the P-NP relations between dual theories. Our study encompasses periodic and symmetric double-well potentials, demonstrating that the exact-WKB method captures intricate structures in quantum systems in all sectors, including multi-instanton contributions and the resurgence of quantum actions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)100.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)100","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the exact-WKB (EWKB) method through the analysis of Airy and Weber types, with an emphasis on the exact quantization of locally harmonic potentials in multiple sectors. The core innovation of our work lies in introducing a novel complexification approach to the energy parameter u, distinct from the common complexification of the (semi-classical) expansion parameter used in Borel summability. This new technique allows for continuous analytical continuation across different sectors of a potential while maintaining the exact quantization condition, even before median summation. By redefining the A-cycle above the potential barrier top, we ensure the quantization condition remains real and, by use of the Stokes automorphism and the median resummation, show that the resurgence structure is preserved across transitions between sectors. Furthermore, we discuss the Weber-type exact-WKB method, offering exact estimates for quantum actions around all types of saddle points, generalizing previous results. Through the analysis of these quantum actions, we reveal the presence of S-duality, facilitating the exchange between perturbative and non-perturbative behaviors, and we conjecture the mapping of the P-NP relations between dual theories. Our study encompasses periodic and symmetric double-well potentials, demonstrating that the exact-WKB method captures intricate structures in quantum systems in all sectors, including multi-instanton contributions and the resurgence of quantum actions.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).