{"title":"Chiral anomalous magnetohydrodynamics in action: effective field theory and holography","authors":"Matteo Baggioli, Yanyan Bu, Xiyang Sun","doi":"10.1007/JHEP04(2025)126","DOIUrl":null,"url":null,"abstract":"<p>Chiral Anomalous Magnetohydrodynamics (CAMHD) provides a low-energy effective framework for describing chiral fluids in the presence of dynamical electromagnetic fields and axial anomaly. This theory finds applications across diverse physical systems, including heavy-ion collisions, the early universe, and Weyl/Dirac semimetals. Along with Schwinger-Keldysh (SK) effective theories, holographic models serve as a complementary tool to provide a systematic formulation of CAMHD that goes beyond the weak coupling regime. In this work, we explore holographic models with U(1)<sub><i>A</i></sub> × U(1) symmetry, where the electromagnetic U(1) field is rendered dynamical through mixed boundary conditions applied to the bulk gauge field and the axial anomaly is introduced via a Chern-Simons bulk term. Through a detailed holographic SK analysis, we demonstrate that the low-energy effective action derived from this model aligns precisely with the SK field theory proposed by Landry and Liu and, in fact, it generalizes it to scenarios with finite background axial field. This alignment not only validates the holographic model but also paves the way for its use in exploring unresolved aspects of CAMHD, such as the recently proposed chiral magnetic electric separation wave and nonlinear chiral instabilities.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)126.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)126","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral Anomalous Magnetohydrodynamics (CAMHD) provides a low-energy effective framework for describing chiral fluids in the presence of dynamical electromagnetic fields and axial anomaly. This theory finds applications across diverse physical systems, including heavy-ion collisions, the early universe, and Weyl/Dirac semimetals. Along with Schwinger-Keldysh (SK) effective theories, holographic models serve as a complementary tool to provide a systematic formulation of CAMHD that goes beyond the weak coupling regime. In this work, we explore holographic models with U(1)A × U(1) symmetry, where the electromagnetic U(1) field is rendered dynamical through mixed boundary conditions applied to the bulk gauge field and the axial anomaly is introduced via a Chern-Simons bulk term. Through a detailed holographic SK analysis, we demonstrate that the low-energy effective action derived from this model aligns precisely with the SK field theory proposed by Landry and Liu and, in fact, it generalizes it to scenarios with finite background axial field. This alignment not only validates the holographic model but also paves the way for its use in exploring unresolved aspects of CAMHD, such as the recently proposed chiral magnetic electric separation wave and nonlinear chiral instabilities.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).