Evan Habbershaw, Cory D. Hauck, Jingwei Hu, Jeffrey R. Haack
{"title":"A Nonlinear, Conservative, Entropic Fokker–Planck Model for Multi-species Collisions","authors":"Evan Habbershaw, Cory D. Hauck, Jingwei Hu, Jeffrey R. Haack","doi":"10.1007/s10955-025-03436-7","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-species Fokker–Planck model for simulating particle collisions in a plasma is presented. The model includes various parameters that must be tuned. Under reasonable assumptions on these parameters, the model satisfies appropriate conservation laws, dissipates an entropy, and satisfies an <span>\\(\\mathcal {H}\\)</span>-Theorem. In addition, the model parameters provide the additional flexibility that is used to match simultaneously momentum and temperature relaxation formulas derived from the Boltzmann collision operator for a binary mixture with Coulomb potential. A numerical method for solving the resulting space-homogeneous kinetic equation is presented and two examples are provided to demonstrate the relaxation of species bulk velocities and temperatures to their equilibrium values.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03436-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-species Fokker–Planck model for simulating particle collisions in a plasma is presented. The model includes various parameters that must be tuned. Under reasonable assumptions on these parameters, the model satisfies appropriate conservation laws, dissipates an entropy, and satisfies an \(\mathcal {H}\)-Theorem. In addition, the model parameters provide the additional flexibility that is used to match simultaneously momentum and temperature relaxation formulas derived from the Boltzmann collision operator for a binary mixture with Coulomb potential. A numerical method for solving the resulting space-homogeneous kinetic equation is presented and two examples are provided to demonstrate the relaxation of species bulk velocities and temperatures to their equilibrium values.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.