{"title":"Atomic layer deposition on flexible polymeric materials for lithium-ion batteries","authors":"Edy Riyanto","doi":"10.1039/D5RA00652J","DOIUrl":null,"url":null,"abstract":"<p >Polymers have the distinctive qualities of being lightweight, flexible, and inexpensive and possessing good mechanical qualities. Consequently, these materials are employed in a wide range of applications, including lithium-ion batteries (LiBs). Interestingly, a variety of thin film materials can be deposited onto polymer substrates using the atomic layer deposition (ALD) technique. This is because the surface of many polymers has abundant reactive sites that are essential for the initial growth of ALD, such as functional hydroxyl –OH groups and –C<img>O polar groups, aiding the smooth growth of ALD materials. Moreover, the diffusion growth mechanism, which is initiated by the nucleation and infiltration of precursors, can enable the initial growth of ALD materials even if the polymers lack these reactive polar groups. As polymers are composed of several chains, they have microporous characteristics, forming voids between the polymer chains. Because of these characteristics, polymers are considered ideal material substrates for investigating the promising future of the widely used ALD technique. The combination of polymer materials and the ALD method is becoming increasingly important in the advancements of high-performance LiBs. This review focuses on the present understanding of the role of polymer materials in the ALD technique for the fabrication of lithium-ion batteries.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 16","pages":" 12382-12401"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00652j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00652j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymers have the distinctive qualities of being lightweight, flexible, and inexpensive and possessing good mechanical qualities. Consequently, these materials are employed in a wide range of applications, including lithium-ion batteries (LiBs). Interestingly, a variety of thin film materials can be deposited onto polymer substrates using the atomic layer deposition (ALD) technique. This is because the surface of many polymers has abundant reactive sites that are essential for the initial growth of ALD, such as functional hydroxyl –OH groups and –CO polar groups, aiding the smooth growth of ALD materials. Moreover, the diffusion growth mechanism, which is initiated by the nucleation and infiltration of precursors, can enable the initial growth of ALD materials even if the polymers lack these reactive polar groups. As polymers are composed of several chains, they have microporous characteristics, forming voids between the polymer chains. Because of these characteristics, polymers are considered ideal material substrates for investigating the promising future of the widely used ALD technique. The combination of polymer materials and the ALD method is becoming increasingly important in the advancements of high-performance LiBs. This review focuses on the present understanding of the role of polymer materials in the ALD technique for the fabrication of lithium-ion batteries.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.