A High-Precision Fluorescence Temperature Sensor Based on Er3+-/Yb3+-Doped KYW2O8 Phosphors

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianglong Xiao;Qian Gao;Ruoshan Lei;Lihui Huang;Shiqing Xu;Shilong Zhao;Xiuli Wang
{"title":"A High-Precision Fluorescence Temperature Sensor Based on Er3+-/Yb3+-Doped KYW2O8 Phosphors","authors":"Xianglong Xiao;Qian Gao;Ruoshan Lei;Lihui Huang;Shiqing Xu;Shilong Zhao;Xiuli Wang","doi":"10.1109/JSEN.2025.3530977","DOIUrl":null,"url":null,"abstract":"A high-precision ratiometric fluorescence temperature sensor was constructed and used to achieve the real-time chip temperature monitoring. Intense green fluorescence signals at 535 and 557 nm were observed in KYW2O8:Er3/Yb3 phosphors at a low energizing power of 1.5 mW. The calibration curve between fluorescence intensity ratio (FIR) of two green fluorescence signals and temperature was built at the temperature range of 253–423 K. The fitted regression coefficient was 0.999. The maximum absolute and relative temperature sensitivity <inline-formula> <tex-math>${S}_{\\text {a}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${S}_{\\text {r}}$ </tex-math></inline-formula> are 0.0115 K<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula> at 423 K and 0.0145 K<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula> at 253 K, respectively. The temperature measurement error is only ±0.2 K. Six round cyclic heating and cooling tests indicate that the built fluorescence temperature sensor exhibits good repeatability and could realize real time and accurate measurement of chip temperature.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"12653-12658"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10930317/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A high-precision ratiometric fluorescence temperature sensor was constructed and used to achieve the real-time chip temperature monitoring. Intense green fluorescence signals at 535 and 557 nm were observed in KYW2O8:Er3/Yb3 phosphors at a low energizing power of 1.5 mW. The calibration curve between fluorescence intensity ratio (FIR) of two green fluorescence signals and temperature was built at the temperature range of 253–423 K. The fitted regression coefficient was 0.999. The maximum absolute and relative temperature sensitivity ${S}_{\text {a}}$ and ${S}_{\text {r}}$ are 0.0115 K $^{-{1}}$ at 423 K and 0.0145 K $^{-{1}}$ at 253 K, respectively. The temperature measurement error is only ±0.2 K. Six round cyclic heating and cooling tests indicate that the built fluorescence temperature sensor exhibits good repeatability and could realize real time and accurate measurement of chip temperature.
基于Er3+-/Yb3+-掺杂KYW2O8荧光粉的高精度荧光温度传感器
构建并使用高精度比率荧光温度传感器实现了芯片温度的实时监测。在 1.5 mW 的低通电功率下,KYW2O8:Er3/Yb3 荧光在 535 和 557 nm 处发出了强烈的绿色荧光信号。在 253-423 K 的温度范围内,建立了两个绿色荧光信号的荧光强度比(FIR)与温度之间的校准曲线,拟合回归系数为 0.999。在 423 K 和 253 K 温度范围内,最大绝对温度灵敏度 ${S}_{text {a}$ 和相对温度灵敏度 ${S}_{text {r}}$ 分别为 0.0115 K $^{-{1}}$ 和 0.0145 K $^{-{1}}$。六轮循环加热和冷却测试表明,所构建的荧光温度传感器具有良好的重复性,可以实现芯片温度的实时精确测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信