{"title":"Chaotic Brillouin Optical Correlation-Domain Analysis Based on Differential Correlation Demodulation","authors":"Haochen Huang;Yahui Wang;Lintao Niu;Jing Chen;Haokun Zhang;Mingjiang Zhang","doi":"10.1109/JSEN.2025.3548641","DOIUrl":null,"url":null,"abstract":"We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) based on a differential correlation demodulation configuration. Multiple correlation peak (CP) localization is achieved by the gain of the central CP (CCP) and that of the difficult-to-eliminate time-delay signature (TDS) peak. The probe differential scheme is introduced and simulated to eliminate the influence of power superposition and obtain the optimized gain distribution. On this basis, the gain interval extraction method is proposed to separate the gain of CCP and TDS positions, and the corresponding Brillouin gain spectra are obtained in simulation and experiment. Ultimately, the synchronous localization of the CCP and TDS with a sensing distance of 410 m and a spatial resolution of less than 8 cm is experimentally demonstrated.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"13033-13038"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10925579/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) based on a differential correlation demodulation configuration. Multiple correlation peak (CP) localization is achieved by the gain of the central CP (CCP) and that of the difficult-to-eliminate time-delay signature (TDS) peak. The probe differential scheme is introduced and simulated to eliminate the influence of power superposition and obtain the optimized gain distribution. On this basis, the gain interval extraction method is proposed to separate the gain of CCP and TDS positions, and the corresponding Brillouin gain spectra are obtained in simulation and experiment. Ultimately, the synchronous localization of the CCP and TDS with a sensing distance of 410 m and a spatial resolution of less than 8 cm is experimentally demonstrated.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice