Attention-Modulated Feature Fusion Neural Network for Inverse Modeling of Microwave Filters

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Linwei Guo;Weihua Cao;Wenkai Hu;Zhengyang Lu;Min Wu
{"title":"Attention-Modulated Feature Fusion Neural Network for Inverse Modeling of Microwave Filters","authors":"Linwei Guo;Weihua Cao;Wenkai Hu;Zhengyang Lu;Min Wu","doi":"10.1109/LMWT.2025.3543778","DOIUrl":null,"url":null,"abstract":"Inverse modeling is extensively applied in the design and tuning of microwave filters (MFs). Inverse models (IMs) take the features extracted from the high-dimensional electromagnetic parameters as input. How to make full use of features from multiple perspective is a critical issue for improving model accuracy. To solve it, this letter proposes an attention-modulated feature fusion neural network (AMFFNN). AMFFNN achieves multiperspective feature fusion (MPFF) at the input side and independent feature fusion (IFF) at the output side. In addition, feature fusion in AMFFNN is enhanced by attention modules to dynamically identify the importance of each feature. Statistical and comparative results of simulations demonstrate that AMFFNN outperforms existing methods in terms of accuracy, stability, and generalization.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 4","pages":"376-379"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10907785/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse modeling is extensively applied in the design and tuning of microwave filters (MFs). Inverse models (IMs) take the features extracted from the high-dimensional electromagnetic parameters as input. How to make full use of features from multiple perspective is a critical issue for improving model accuracy. To solve it, this letter proposes an attention-modulated feature fusion neural network (AMFFNN). AMFFNN achieves multiperspective feature fusion (MPFF) at the input side and independent feature fusion (IFF) at the output side. In addition, feature fusion in AMFFNN is enhanced by attention modules to dynamically identify the importance of each feature. Statistical and comparative results of simulations demonstrate that AMFFNN outperforms existing methods in terms of accuracy, stability, and generalization.
用于微波滤波器逆建模的注意力调制特征融合神经网络
逆建模广泛应用于微波滤波器的设计和调谐。逆模型以从高维电磁参数中提取的特征作为输入。如何从多个角度充分利用特征是提高模型精度的关键问题。为了解决这一问题,本文提出了一种注意力调制特征融合神经网络(AMFFNN)。AMFFNN在输入侧实现多视角特征融合(MPFF),在输出侧实现独立特征融合(IFF)。此外,AMFFNN还通过关注模块增强特征融合,动态识别每个特征的重要性。仿真的统计和比较结果表明,AMFFNN在精度、稳定性和泛化方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信