{"title":"A Dual-Core Dual-Mode Class-F VCO With Wide Frequency Tuning Range Using Wide Inductance-Switching-Range Inductor","authors":"Yaru Hou;Runlong Li;Pei-Ling Chi;Tao Yang","doi":"10.1109/LMWT.2025.3536158","DOIUrl":null,"url":null,"abstract":"A novel dual-core dual-mode class-F voltage-controlled oscillator (VCO) with wide frequency tuning range (TR) is proposed in this letter. It consists of two coupled parallel “8”-shaped inductor and two crossed-coupled VCO cores. To increase the TR of the proposed VCO without adding additional footprint size, a single-turn common-mode inductor is embedded inside the “8”-shaped inductor. By controlling the mode switches, the inductor can work in different modes with large inductance difference, realizing large VCO TR consequently. Then, the two coupled inductors were engineered to form the fundamental and third harmonic resonances, respectively, thereby producing a pseudo-square wave output waveform and realizing class-F operation. With the proposed configuration, the phase noise (PN) of the proposed VCO can be significantly reduced without increasing VCO core size. To demonstrate the proposed idea, a VCO prototype is fabricated in a 65-nm CMOS process with a core size of <inline-formula> <tex-math>$1.235\\times 0.8$ </tex-math></inline-formula> mm. It achieves a wide frequency TR from 2.84 to 7.04 GHz. The measured PN at 1-MHz offset is from −123.9 to −113.1 dBc/Hz, demonstrating an FOMT of 196.0–201.3 dBc/Hz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 4","pages":"460-463"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879256/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel dual-core dual-mode class-F voltage-controlled oscillator (VCO) with wide frequency tuning range (TR) is proposed in this letter. It consists of two coupled parallel “8”-shaped inductor and two crossed-coupled VCO cores. To increase the TR of the proposed VCO without adding additional footprint size, a single-turn common-mode inductor is embedded inside the “8”-shaped inductor. By controlling the mode switches, the inductor can work in different modes with large inductance difference, realizing large VCO TR consequently. Then, the two coupled inductors were engineered to form the fundamental and third harmonic resonances, respectively, thereby producing a pseudo-square wave output waveform and realizing class-F operation. With the proposed configuration, the phase noise (PN) of the proposed VCO can be significantly reduced without increasing VCO core size. To demonstrate the proposed idea, a VCO prototype is fabricated in a 65-nm CMOS process with a core size of $1.235\times 0.8$ mm. It achieves a wide frequency TR from 2.84 to 7.04 GHz. The measured PN at 1-MHz offset is from −123.9 to −113.1 dBc/Hz, demonstrating an FOMT of 196.0–201.3 dBc/Hz.