Highly Time-Resolved All-Fiber Sensor for Real-Time Carbon Monoxide Detection and Microleakage Diagnosis

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kaiyu Chai;Yipeng Zheng;Bo Hu;Zihao Zhou;Kaili Ren;Dongdong Han;Lipeng Zhu;Yongkai Wang;Lei Liang
{"title":"Highly Time-Resolved All-Fiber Sensor for Real-Time Carbon Monoxide Detection and Microleakage Diagnosis","authors":"Kaiyu Chai;Yipeng Zheng;Bo Hu;Zihao Zhou;Kaili Ren;Dongdong Han;Lipeng Zhu;Yongkai Wang;Lei Liang","doi":"10.1109/JSEN.2025.3546697","DOIUrl":null,"url":null,"abstract":"The detection of carbon monoxide (CO) is of paramount importance for environmental monitoring, industrial safety, and public health. This study presents an all-fiber gas concentration monitoring technique based on tunable diode laser absorption spectroscopy (TDLAS), offering low gas consumption, high time resolution, high stability, and high precision. A 1-m-long negative curvature anti-resonant hollow core fiber (HCF) with a core diameter of <inline-formula> <tex-math>$110~\\mu $ </tex-math></inline-formula>m is used for both gas containment and optical transmission. Experimental and theoretical simulations confirm that the response time of the system reaches 1.27 s at an overpressure of 98 kPa. Furthermore, the system achieves a relative standard deviation (RSD) of less than 2.5% and a minimum detection limit (MDL) of 0.220 ppm under optimal overpressure conditions. In addition, a spatial-resolved scanning imaging is demonstrated for the CO concentration distribution of 190-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m leakage point, enabling clear identification of the topographical features. This technology has potential in the fields of environmental monitoring, industrial safety, and public health.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 8","pages":"13005-13011"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10924455/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of carbon monoxide (CO) is of paramount importance for environmental monitoring, industrial safety, and public health. This study presents an all-fiber gas concentration monitoring technique based on tunable diode laser absorption spectroscopy (TDLAS), offering low gas consumption, high time resolution, high stability, and high precision. A 1-m-long negative curvature anti-resonant hollow core fiber (HCF) with a core diameter of $110~\mu $ m is used for both gas containment and optical transmission. Experimental and theoretical simulations confirm that the response time of the system reaches 1.27 s at an overpressure of 98 kPa. Furthermore, the system achieves a relative standard deviation (RSD) of less than 2.5% and a minimum detection limit (MDL) of 0.220 ppm under optimal overpressure conditions. In addition, a spatial-resolved scanning imaging is demonstrated for the CO concentration distribution of 190- $\mu $ m leakage point, enabling clear identification of the topographical features. This technology has potential in the fields of environmental monitoring, industrial safety, and public health.
用于一氧化碳实时检测和微泄漏诊断的高时间分辨全光纤传感器
一氧化碳(CO)的检测对环境监测、工业安全和公众健康至关重要。本研究提出一种基于可调谐二极管激光吸收光谱(TDLAS)的全光纤气体浓度监测技术,具有低气体消耗、高时间分辨率、高稳定性和高精度的特点。采用1 m长负曲率抗谐振空芯光纤(HCF),芯径为$110~\mu $ m,用于容气和光传输。实验和理论仿真均证实,在超压为98 kPa时,系统的响应时间达到1.27 s。此外,在最佳超压条件下,该系统的相对标准偏差(RSD)小于2.5%,最小检测限(MDL)为0.220 ppm。此外,还展示了190- $\mu $ m泄漏点CO浓度分布的空间分辨扫描成像,能够清晰地识别地形特征。该技术在环境监测、工业安全和公共卫生领域具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信