{"title":"Adaptive Prescribed Finite-Time Bipartite Consensus Control for Nonaffine Nonlinear MASs Under Structurally Unbalanced Topology","authors":"Xiaomei Wang;Yongduan Song;Xudong Zhao;Huanqing Wang;Ding Wang;Ben Niu","doi":"10.1109/TSMC.2025.3540897","DOIUrl":null,"url":null,"abstract":"This article investigates an adaptive bipartite consensus tracking control algorithm for a class of heterogeneous nonaffine nonlinear multiagent systems (MASs) with prescribed finite-time tracking performance under an unbalanced communication topology. In the case of an unbalanced digraph, a novel locally optimal bipartition strategy is proposed to transform the unbalanced communication topology into a structurally balanced one, thereby enabling the implementation of bipartite consensus tracking control. To achieve the expected tracking performance, the design philosophy focuses on developing a prescribed finite-time performance function (PFTPF), capable of preassigning the convergence time and accuracy precisely beforehand. The explored adaptive control algorithm can ensure that the whole signals concerning the closed-loop MASs remain bounded while the bipartite consensus errors converge to a predetermined range around zero within the prescribed finite time. Ultimately, the simulation results on robotic systems prove the availability of the developed design solution.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 5","pages":"3532-3541"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10906550/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates an adaptive bipartite consensus tracking control algorithm for a class of heterogeneous nonaffine nonlinear multiagent systems (MASs) with prescribed finite-time tracking performance under an unbalanced communication topology. In the case of an unbalanced digraph, a novel locally optimal bipartition strategy is proposed to transform the unbalanced communication topology into a structurally balanced one, thereby enabling the implementation of bipartite consensus tracking control. To achieve the expected tracking performance, the design philosophy focuses on developing a prescribed finite-time performance function (PFTPF), capable of preassigning the convergence time and accuracy precisely beforehand. The explored adaptive control algorithm can ensure that the whole signals concerning the closed-loop MASs remain bounded while the bipartite consensus errors converge to a predetermined range around zero within the prescribed finite time. Ultimately, the simulation results on robotic systems prove the availability of the developed design solution.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.