Multiparty Random Phase Wrapping Secret-Sharing Systems for Visual Data Security

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Youhyun Kim;Ongee Jeong;Inkyu Moon;Bahram Javidi
{"title":"Multiparty Random Phase Wrapping Secret-Sharing Systems for Visual Data Security","authors":"Youhyun Kim;Ongee Jeong;Inkyu Moon;Bahram Javidi","doi":"10.1109/TSMC.2025.3541827","DOIUrl":null,"url":null,"abstract":"A secret sharing scheme is an important cryptographic procedure that enables the secure distribution of secret information, such as private images, in an untrusted network. However, in all secret sharing schemes, the sizes of the shares increase in proportion to the size of the secret information, because they involve computationally expensive polynomials of degree <inline-formula> <tex-math>$n-1$ </tex-math></inline-formula> (n is total number of shares) and increasingly large modulus of modulo operations for security. Moreover, with large share sizes, it is not easy in practice to encrypt them quickly using block cipher algorithms. Therefore, ensuring the security of secret sharing for large-scale visual data with a reasonable share length and efficiently encrypting n shares properly represents formidable challenges. To overcome these challenges in secret sharing schemes, we propose new multiparty random phase wrapping secret sharing systems for visual datasets. Computational optical imaging enables the acquisition of wrapped phase information, ranging from –<inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula> to <inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>, to be expressed in the form of a complex sinusoidal waveform. The proposed scheme allows for large-scale secret data—such as confidential digital images and visual data, including optical images—to be securely and efficiently shared and distributed to multiple parties or agencies utilizing a digital representation of a complex sinusoidal waveform of the secret information. The proposed scheme can be useful in cryptographic key escrow systems and in use with large-scale secret data.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 5","pages":"3586-3600"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10925349/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A secret sharing scheme is an important cryptographic procedure that enables the secure distribution of secret information, such as private images, in an untrusted network. However, in all secret sharing schemes, the sizes of the shares increase in proportion to the size of the secret information, because they involve computationally expensive polynomials of degree $n-1$ (n is total number of shares) and increasingly large modulus of modulo operations for security. Moreover, with large share sizes, it is not easy in practice to encrypt them quickly using block cipher algorithms. Therefore, ensuring the security of secret sharing for large-scale visual data with a reasonable share length and efficiently encrypting n shares properly represents formidable challenges. To overcome these challenges in secret sharing schemes, we propose new multiparty random phase wrapping secret sharing systems for visual datasets. Computational optical imaging enables the acquisition of wrapped phase information, ranging from – $\pi $ to $\pi $ , to be expressed in the form of a complex sinusoidal waveform. The proposed scheme allows for large-scale secret data—such as confidential digital images and visual data, including optical images—to be securely and efficiently shared and distributed to multiple parties or agencies utilizing a digital representation of a complex sinusoidal waveform of the secret information. The proposed scheme can be useful in cryptographic key escrow systems and in use with large-scale secret data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信