Co-Opetition Network-Based Group Decision-Making Under Incomplete Information

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xiwen Ma;Zhihuan Hu;Kairong Duan;Xiaolin Ai;Wei Xie;Jingsong Yang;Weidong Zhang
{"title":"Co-Opetition Network-Based Group Decision-Making Under Incomplete Information","authors":"Xiwen Ma;Zhihuan Hu;Kairong Duan;Xiaolin Ai;Wei Xie;Jingsong Yang;Weidong Zhang","doi":"10.1109/TSMC.2025.3540492","DOIUrl":null,"url":null,"abstract":"The integration of cooperation and competition strategies in game theory emphasizes the systematic nature of strategy spaces and group interactions, forming the basis for achieving win-win scenarios. This is particularly crucial under coalition constraints and incomplete information. Addressing these challenges, this article introduces a comprehensive mathematical method for policy formation using co-opetition topological networks. This method enables autonomous decision-making and game equilibrium in group decision scenarios, considering individual preferences amidst constraints like incomplete information and alliance limitations. Leveraging the complementary entropy theorem on superiority, inferiority, and fuzzy measures, we propose a cognitive model for information interaction and attribute fusion. Utilizing the ordered weighted averaging operator and average tree solutions aids in identifying optimal alliance structures. We subsequently discuss evaluating missing information to complete the topological network. Updating the cognitive model and value function, we develop a Gaussian oscillation heuristic algorithm to explore alliance and component strategy spaces. Simulation results are provided and analyzed to illustrate the performance and effectiveness of our approach.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 5","pages":"3464-3479"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10915723/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of cooperation and competition strategies in game theory emphasizes the systematic nature of strategy spaces and group interactions, forming the basis for achieving win-win scenarios. This is particularly crucial under coalition constraints and incomplete information. Addressing these challenges, this article introduces a comprehensive mathematical method for policy formation using co-opetition topological networks. This method enables autonomous decision-making and game equilibrium in group decision scenarios, considering individual preferences amidst constraints like incomplete information and alliance limitations. Leveraging the complementary entropy theorem on superiority, inferiority, and fuzzy measures, we propose a cognitive model for information interaction and attribute fusion. Utilizing the ordered weighted averaging operator and average tree solutions aids in identifying optimal alliance structures. We subsequently discuss evaluating missing information to complete the topological network. Updating the cognitive model and value function, we develop a Gaussian oscillation heuristic algorithm to explore alliance and component strategy spaces. Simulation results are provided and analyzed to illustrate the performance and effectiveness of our approach.
不完全信息下基于合作竞争网络的群体决策
博弈论中合作与竞争策略的整合强调了策略空间和群体互动的系统性,是实现双赢的基础。在联盟约束和信息不完整的情况下,这一点尤为重要。针对这些挑战,本文介绍了一种利用合作竞争拓扑网络进行政策形成的综合数学方法。该方法考虑了不完全信息和联盟限制等约束条件下的个体偏好,实现了群体决策场景下的自主决策和博弈均衡。利用优势度量、劣势度量和模糊度量的互补熵定理,提出了一种信息交互和属性融合的认知模型。利用有序加权平均算子和平均树解有助于识别最优联盟结构。我们随后讨论评估缺失信息以完成拓扑网络。更新认知模型和价值函数,提出了一种高斯振荡启发式算法来探索联盟和组件策略空间。仿真结果说明了该方法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信