{"title":"Point-of-need species identification using non-PCR DNA-based approaches to combat wildlife crime","authors":"O. Yugovich , M. Bunce , SA. Harbison","doi":"10.1016/j.fsigen.2025.103278","DOIUrl":null,"url":null,"abstract":"<div><div>Wildlife crime, defined as any unlawful exploitation and trade of wildlife, is a lucrative illegal global industry, along with narcotics and weapons trafficking. It encompasses the harvest, transport, exchange, and end use of wildlife or wildlife-derived products. Regulated internationally by the Convention on the International Trade in Endangered Species of Flora and Fauna (CITES, 1973), wildlife crime is primarily detected using morphological or DNA sequencing methods. However, there is a growing demand for rapid, portable, and cost-effective screening tools to bypass time-consuming workflows and specialist laboratory equipment. Point-of-need testing, particularly at wildlife hotspots like international borders, offers a promising solution for the swift detection of illegal activities. Isothermal amplification methods such as loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), and recombinase polymerase amplification (RPA), are favoured for their low resource needs compared to traditional PCR. These methods can be combined with target detection methods such as clustered regularly interspaced short palindromic repeats (CRISPR) and aptamers to enhance sensitivity. Integrating these methods with others, such as lateral flow assays (LFA) and microfluidic devices, simplifies sample preparation and visualisation. Already established in disease diagnosis and food safety, these innovations in genetic testing provide rapid, on-site detection. When applied to wildlife crime, they can serve as tools to complement traditional PCR and sequencing methods. This review explores how non-PCR based approaches could offer faster, simpler, and more cost-effective solutions to combat wildlife crime.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103278"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000584","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildlife crime, defined as any unlawful exploitation and trade of wildlife, is a lucrative illegal global industry, along with narcotics and weapons trafficking. It encompasses the harvest, transport, exchange, and end use of wildlife or wildlife-derived products. Regulated internationally by the Convention on the International Trade in Endangered Species of Flora and Fauna (CITES, 1973), wildlife crime is primarily detected using morphological or DNA sequencing methods. However, there is a growing demand for rapid, portable, and cost-effective screening tools to bypass time-consuming workflows and specialist laboratory equipment. Point-of-need testing, particularly at wildlife hotspots like international borders, offers a promising solution for the swift detection of illegal activities. Isothermal amplification methods such as loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), and recombinase polymerase amplification (RPA), are favoured for their low resource needs compared to traditional PCR. These methods can be combined with target detection methods such as clustered regularly interspaced short palindromic repeats (CRISPR) and aptamers to enhance sensitivity. Integrating these methods with others, such as lateral flow assays (LFA) and microfluidic devices, simplifies sample preparation and visualisation. Already established in disease diagnosis and food safety, these innovations in genetic testing provide rapid, on-site detection. When applied to wildlife crime, they can serve as tools to complement traditional PCR and sequencing methods. This review explores how non-PCR based approaches could offer faster, simpler, and more cost-effective solutions to combat wildlife crime.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.