Unisolvence of Kansa collocation for elliptic equations by polyharmonic splines with random fictitious centers

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Maryam Mohammadi , Alvise Sommariva , Marco Vianello
{"title":"Unisolvence of Kansa collocation for elliptic equations by polyharmonic splines with random fictitious centers","authors":"Maryam Mohammadi ,&nbsp;Alvise Sommariva ,&nbsp;Marco Vianello","doi":"10.1016/j.aml.2025.109571","DOIUrl":null,"url":null,"abstract":"<div><div>We make a further step in the unisolvence open problem for unsymmetric Kansa collocation, proving almost sure nonsingularity of Kansa matrices with polyharmonic splines and random fictitious centers, for second-order elliptic equations with mixed boundary conditions. We also show some numerical tests, where the fictitious centers are local random perturbations of predetermined collocation points.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"168 ","pages":"Article 109571"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001211","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We make a further step in the unisolvence open problem for unsymmetric Kansa collocation, proving almost sure nonsingularity of Kansa matrices with polyharmonic splines and random fictitious centers, for second-order elliptic equations with mixed boundary conditions. We also show some numerical tests, where the fictitious centers are local random perturbations of predetermined collocation points.
带随机虚拟中心的多谐样条椭圆方程Kansa配置的不均匀性
我们进一步研究了非对称Kansa配置的不一致开问题,证明了具有多谐样条和随机虚中心的二阶椭圆方程的Kansa矩阵在混合边界条件下的几乎肯定非奇异性。我们还给出了一些数值测试,其中虚拟中心是预定配点的局部随机扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信