Approaches with different reaction gases for the determination of iron in rare earth samples based on on-mass mode by inductively coupled plasma tandem mass spectrometer
IF 1.6 3区 化学Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
{"title":"Approaches with different reaction gases for the determination of iron in rare earth samples based on on-mass mode by inductively coupled plasma tandem mass spectrometer","authors":"Zhe Fang , Haizhou Wang , Lei Wang , Kai Li","doi":"10.1016/j.ijms.2025.117456","DOIUrl":null,"url":null,"abstract":"<div><div>The determination of iron using ICP-MS-MS is complicated due to the polyatomic spectral interferences, notably the <sup>40</sup>Ar<sup>16</sup>O<sup>+</sup> on the abundant <sup>56</sup>Fe isotope. In this research, the utilization of three gases—helium, hydrogen, and methane—to accurately quantify iron was proposed using the on-mass mode by inductively coupled plasma tandem mass spectrometer. The conditions of the collision/reaction cell were optimized, particularly the gas flow rate and the hexapole bias voltage, for iron analysis. Different mechanisms, including collision and reactions like charge transfer reactions, hydrogen atom transfer reactions, and proton transfer reactions, were explored. In terms of sensitivity and background equivalent concentration (BEC), the hydrogen mode exhibited the highest sensitivity and the lowest BEC. The methane mode yields a comparable BEC to that of the hydrogen mode with a threefold reduction in sensitivity. The limit of quantification (LOQ) under the hydrogen reaction mode was as low as 0.028 μg/g.The analysis results of the national standard substance GBW07159 were in excellent agreement with the certified values, and the relative standard deviation (RSD) for n = 11 was less than 5 % in the three modes. The measured values and spiked recoveries for rare earth oxides were essentially consistent between the hydrogen and methane modes. Following validation, the hydrogen and methane reaction modes have been shown to accurately analyze iron in rare earth and rare earth oxides with high accuracy and stability, surpassing the helium mode in terms of collision mechanism.</div></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"513 ","pages":"Article 117456"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380625000600","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of iron using ICP-MS-MS is complicated due to the polyatomic spectral interferences, notably the 40Ar16O+ on the abundant 56Fe isotope. In this research, the utilization of three gases—helium, hydrogen, and methane—to accurately quantify iron was proposed using the on-mass mode by inductively coupled plasma tandem mass spectrometer. The conditions of the collision/reaction cell were optimized, particularly the gas flow rate and the hexapole bias voltage, for iron analysis. Different mechanisms, including collision and reactions like charge transfer reactions, hydrogen atom transfer reactions, and proton transfer reactions, were explored. In terms of sensitivity and background equivalent concentration (BEC), the hydrogen mode exhibited the highest sensitivity and the lowest BEC. The methane mode yields a comparable BEC to that of the hydrogen mode with a threefold reduction in sensitivity. The limit of quantification (LOQ) under the hydrogen reaction mode was as low as 0.028 μg/g.The analysis results of the national standard substance GBW07159 were in excellent agreement with the certified values, and the relative standard deviation (RSD) for n = 11 was less than 5 % in the three modes. The measured values and spiked recoveries for rare earth oxides were essentially consistent between the hydrogen and methane modes. Following validation, the hydrogen and methane reaction modes have been shown to accurately analyze iron in rare earth and rare earth oxides with high accuracy and stability, surpassing the helium mode in terms of collision mechanism.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.