Donghyeon Lee , Jong-Hyun Kim , Seong Baek Yang , Dong-Jun Kwon
{"title":"Development of reprocessable structural adhesives based on covalent adaptable networks for wind turbine blade","authors":"Donghyeon Lee , Jong-Hyun Kim , Seong Baek Yang , Dong-Jun Kwon","doi":"10.1016/j.compositesb.2025.112519","DOIUrl":null,"url":null,"abstract":"<div><div>Since the 2000s, the increasing installation of wind turbines has highlighted the challenges associated with the disposal of decommissioned turbines at the end of their service life. This study investigates solutions for enhancing the recyclability of composite materials generated during wind turbine decommissioning, while also addressing issues related to adhesive removal and disposal. This study addition of disulfide epoxy additive (DEA) into structural adhesives to introduce covalent adaptive networks (CANs). An optimal formulation was developed to ensure reprocessability while maintaining mechanical properties. The addition of DEA resulted in a decrease in mechanical strength and T<sub>g</sub>, while reprocessability was enhanced. Reprocessing experiments showed that specimens with more than 15 wt% DEA recovered mechanical properties, with 20 wt% achieving the highest recovery (73 % of initial shear strength) after two cycles. Fracture surface analysis revealed a shift from brittle to ductile failure with increasing DEA. Fatigue testing also confirmed improved durability, with strength loss reduced from 57 % (0 wt%) to 26 % (20 wt%) after 1000 cycles. This phenomenon is attributed to the flexibility of the aliphatic structure, which reduces crack propagation rates while simultaneously promoting reversible bond dissociation and reformation. This study provides fundamental data for wind turbine blade waste management and recycling technology development. The findings are expected to contribute to the advancement of sustainable wind turbine materials.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"301 ","pages":"Article 112519"},"PeriodicalIF":12.7000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825004202","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the 2000s, the increasing installation of wind turbines has highlighted the challenges associated with the disposal of decommissioned turbines at the end of their service life. This study investigates solutions for enhancing the recyclability of composite materials generated during wind turbine decommissioning, while also addressing issues related to adhesive removal and disposal. This study addition of disulfide epoxy additive (DEA) into structural adhesives to introduce covalent adaptive networks (CANs). An optimal formulation was developed to ensure reprocessability while maintaining mechanical properties. The addition of DEA resulted in a decrease in mechanical strength and Tg, while reprocessability was enhanced. Reprocessing experiments showed that specimens with more than 15 wt% DEA recovered mechanical properties, with 20 wt% achieving the highest recovery (73 % of initial shear strength) after two cycles. Fracture surface analysis revealed a shift from brittle to ductile failure with increasing DEA. Fatigue testing also confirmed improved durability, with strength loss reduced from 57 % (0 wt%) to 26 % (20 wt%) after 1000 cycles. This phenomenon is attributed to the flexibility of the aliphatic structure, which reduces crack propagation rates while simultaneously promoting reversible bond dissociation and reformation. This study provides fundamental data for wind turbine blade waste management and recycling technology development. The findings are expected to contribute to the advancement of sustainable wind turbine materials.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.