Oladimeji Aladelokun , Katherine Benitez , Yuying Wang , Abhishek Jain , Domenica Berardi , Georgio Maroun , Xinyi Shen , Jatin Roper , Joanna Gibson , Kaelyn Sumigray , Sajid A. Khan , Caroline H. Johnson
{"title":"Sex-specific effects of exogenous asparagine on colorectal tumor growth, 17β-estradiol levels, and aromatase","authors":"Oladimeji Aladelokun , Katherine Benitez , Yuying Wang , Abhishek Jain , Domenica Berardi , Georgio Maroun , Xinyi Shen , Jatin Roper , Joanna Gibson , Kaelyn Sumigray , Sajid A. Khan , Caroline H. Johnson","doi":"10.1016/j.phrs.2025.107736","DOIUrl":null,"url":null,"abstract":"<div><div>Sex-related differences in asparagine metabolism are associated with cancer prognosis. However, the effect of exogenous asparagine on colorectal cancer (CRC) growth in men and women remains unclear. This study aims to understand the relationship between exogenous asparagine supplementation and 17β-estradiol levels and to elucidate mechanisms underlying sex-dependent signaling during CRC development. We administered asparagine intraperitoneally to tumor-bearing male and female immunodeficient Rag2/Il2RG (R2G2) mice. Asparagine supplementation caused a significant increase in tumor asparagine levels in both the tumor-bearing male and female R2G2 mice but increased serum estradiol levels and suppressed tumor growth in female R2G2 mice only. Additionally, we combined transcriptome, metabolome, and immunochemical analyses, and found that intraperitoneal asparagine treatment induced sex-dependent intra-tumoral metabolic changes to asparagine, aspartate, glutamine and glutamate levels. We observed that in females, exogenous asparagine exerts a negative feed-back effect on <em>de novo</em> asparagine synthesis and is associated with the activation of a sub-population of macrophages that may secrete 17β-estradiol via an aromatase or cytochrome P450 family 19 (CYP19)-dependent mechanism. Conversely, in male mice, asparagine treatment augments tumor growth, and is related to decreased numbers of macrophages, and a reduction in CYP19-mediated 17β-estradiol secretion . Overall, our results reveal a novel and sex-specific role for exogenous asparagine during cancer progression and underscores the importance of understanding mechanisms that control asparagine biosynthesis.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"215 ","pages":"Article 107736"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825001616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex-related differences in asparagine metabolism are associated with cancer prognosis. However, the effect of exogenous asparagine on colorectal cancer (CRC) growth in men and women remains unclear. This study aims to understand the relationship between exogenous asparagine supplementation and 17β-estradiol levels and to elucidate mechanisms underlying sex-dependent signaling during CRC development. We administered asparagine intraperitoneally to tumor-bearing male and female immunodeficient Rag2/Il2RG (R2G2) mice. Asparagine supplementation caused a significant increase in tumor asparagine levels in both the tumor-bearing male and female R2G2 mice but increased serum estradiol levels and suppressed tumor growth in female R2G2 mice only. Additionally, we combined transcriptome, metabolome, and immunochemical analyses, and found that intraperitoneal asparagine treatment induced sex-dependent intra-tumoral metabolic changes to asparagine, aspartate, glutamine and glutamate levels. We observed that in females, exogenous asparagine exerts a negative feed-back effect on de novo asparagine synthesis and is associated with the activation of a sub-population of macrophages that may secrete 17β-estradiol via an aromatase or cytochrome P450 family 19 (CYP19)-dependent mechanism. Conversely, in male mice, asparagine treatment augments tumor growth, and is related to decreased numbers of macrophages, and a reduction in CYP19-mediated 17β-estradiol secretion . Overall, our results reveal a novel and sex-specific role for exogenous asparagine during cancer progression and underscores the importance of understanding mechanisms that control asparagine biosynthesis.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.