Limin Zhai , Yifei Gao , Hao Yang , Haoyuan Wang , Beining Liao , Yuxue Cheng , Chao Liu , Jingfeng Che , Kunwen Xia , Lingkun Zhang , Yanqing Guan
{"title":"A ROS-Responsive nanoparticle for nuclear gene delivery and autophagy restoration in Parkinson's disease therapy","authors":"Limin Zhai , Yifei Gao , Hao Yang , Haoyuan Wang , Beining Liao , Yuxue Cheng , Chao Liu , Jingfeng Che , Kunwen Xia , Lingkun Zhang , Yanqing Guan","doi":"10.1016/j.biomaterials.2025.123345","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is characterized by the pathological aggregation of α-synuclein (α-syn) and neuroinflammation. Current gene therapies face challenges in nuclear delivery and resolving pre-existing α-syn aggregates. Here, we developed glucose-and trehalose-functionalized carbonized polymer dots (GT-PCDs) loaded with plasmid DNA (pDNA) for targeted gene delivery and autophagy restoration. The GT-PCDs@pDNA nanoparticles exhibit reactive oxygen species (ROS)-responsive behavior, enabling efficient nuclear entry under oxidative stress conditions. Both in vitro and in vivo studies demonstrated that GT-PCDs@pDNA effectively silenced <em>SNCA</em> gene expression, reduced α-syn aggregates, and restored autophagic flux by promoting transcription factor EB (TFEB) nuclear translocation. Moreover, GT-PCDs@pDNA enhanced blood-brain barrier (BBB) permeability via glucose transporter 1 (Glut-1)-mediated transcytosis, significantly improving motor deficits and reducing neuroinflammation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. This multifunctional nanocarrier system offers a promising strategy for combined gene therapy and autophagy modulation in neurodegenerative diseases.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123345"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002649","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is characterized by the pathological aggregation of α-synuclein (α-syn) and neuroinflammation. Current gene therapies face challenges in nuclear delivery and resolving pre-existing α-syn aggregates. Here, we developed glucose-and trehalose-functionalized carbonized polymer dots (GT-PCDs) loaded with plasmid DNA (pDNA) for targeted gene delivery and autophagy restoration. The GT-PCDs@pDNA nanoparticles exhibit reactive oxygen species (ROS)-responsive behavior, enabling efficient nuclear entry under oxidative stress conditions. Both in vitro and in vivo studies demonstrated that GT-PCDs@pDNA effectively silenced SNCA gene expression, reduced α-syn aggregates, and restored autophagic flux by promoting transcription factor EB (TFEB) nuclear translocation. Moreover, GT-PCDs@pDNA enhanced blood-brain barrier (BBB) permeability via glucose transporter 1 (Glut-1)-mediated transcytosis, significantly improving motor deficits and reducing neuroinflammation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. This multifunctional nanocarrier system offers a promising strategy for combined gene therapy and autophagy modulation in neurodegenerative diseases.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.