Spectral Contrastive Clustering

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jerome Williams, Antonio Robles-Kelly
{"title":"Spectral Contrastive Clustering","authors":"Jerome Williams,&nbsp;Antonio Robles-Kelly","doi":"10.1016/j.patcog.2025.111671","DOIUrl":null,"url":null,"abstract":"<div><div>We combine online spectral clustering and contrastive representation learning into a novel deep clustering algorithm that can be used for unsupervised image classification. We estimate a spectral embedding using minibatches. Spectral cluster assignments are used by a pairwise contrastive loss to update the model’s latent space, allowing our spectral embedding to adapt over time. We obtain competitive unsupervised classification performance purely by applying K-Means to our spectral embedding. Unlike competing methods, our approach does not require strong augmentations, class-balancing penalties, offline example mining or softmax classifiers.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"166 ","pages":"Article 111671"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325003310","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We combine online spectral clustering and contrastive representation learning into a novel deep clustering algorithm that can be used for unsupervised image classification. We estimate a spectral embedding using minibatches. Spectral cluster assignments are used by a pairwise contrastive loss to update the model’s latent space, allowing our spectral embedding to adapt over time. We obtain competitive unsupervised classification performance purely by applying K-Means to our spectral embedding. Unlike competing methods, our approach does not require strong augmentations, class-balancing penalties, offline example mining or softmax classifiers.
光谱对比聚类
我们将在线光谱聚类和对比表示学习结合成一种新的深度聚类算法,可用于无监督图像分类。我们使用小批量估计谱嵌入。光谱聚类分配通过两两对比损失来更新模型的潜在空间,允许我们的光谱嵌入随着时间的推移而适应。通过对谱嵌入应用K-Means,我们获得了具有竞争力的无监督分类性能。与竞争方法不同,我们的方法不需要强增强、类平衡惩罚、离线示例挖掘或softmax分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信