Guohui Xiao , Hongyu Shi , Meixia Liu , Min Huang , Siqi Li , Xuefeng Zhou , Hengfei Li , Guoliang Zhang
{"title":"Trans-cleavage activity of Cas12a effectors can be unleashed by both double-stranded DNA and single-stranded RNA targeting in absence of PAM","authors":"Guohui Xiao , Hongyu Shi , Meixia Liu , Min Huang , Siqi Li , Xuefeng Zhou , Hengfei Li , Guoliang Zhang","doi":"10.1016/j.ijbiomac.2025.142992","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR-Cas12a is a powerful tool in nucleic acid detection, but the relationship between its trans-cleavage activity and protospacer adjacent motif (PAM) sequences remains incompletely understood. In this study, we synthesized diverse PAM-sequence substrates and conducted systematic cis-cleavage and trans-cleavage experiments with three Cas12a orthologs. We found that double-stranded DNA (dsDNA) can activate Cas12a's trans-cleavage activity even without PAM and this activation occurring independently of cis-cleavage. Notably, our results also revealed that single-stranded RNA (ssRNA) can directly initiate the trans-cleavage activity of Cas12a.We also experimentally validated the feasibility of CRISPR-Cas12a in detecting target dsDNA lacking PAM sequences, including identifying mutated sites in clinical samples. Structural prediction using AlphaFold 3 revealed the potential mechanism of Cas12a's PAM-independent trans-cleavage. Our research expands the understanding of Cas12a's trans-cleavage mechanism and demonstrates its potential for nucleic acid detection beyond PAM-dependent targets. This discovery broadens the application scope of Cas12a, providing new opportunities for developing highly sensitive and versatile diagnostic platforms.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"309 ","pages":"Article 142992"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025035445","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas12a is a powerful tool in nucleic acid detection, but the relationship between its trans-cleavage activity and protospacer adjacent motif (PAM) sequences remains incompletely understood. In this study, we synthesized diverse PAM-sequence substrates and conducted systematic cis-cleavage and trans-cleavage experiments with three Cas12a orthologs. We found that double-stranded DNA (dsDNA) can activate Cas12a's trans-cleavage activity even without PAM and this activation occurring independently of cis-cleavage. Notably, our results also revealed that single-stranded RNA (ssRNA) can directly initiate the trans-cleavage activity of Cas12a.We also experimentally validated the feasibility of CRISPR-Cas12a in detecting target dsDNA lacking PAM sequences, including identifying mutated sites in clinical samples. Structural prediction using AlphaFold 3 revealed the potential mechanism of Cas12a's PAM-independent trans-cleavage. Our research expands the understanding of Cas12a's trans-cleavage mechanism and demonstrates its potential for nucleic acid detection beyond PAM-dependent targets. This discovery broadens the application scope of Cas12a, providing new opportunities for developing highly sensitive and versatile diagnostic platforms.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.