M2DETR: A Multi-band Multi-scale Detection Transformer for Pest Detection

IF 8.9 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wenbin Tan , Li Zhang , Yiwang Huang , Kaibei Peng , Yanyun Qu
{"title":"M2DETR: A Multi-band Multi-scale Detection Transformer for Pest Detection","authors":"Wenbin Tan ,&nbsp;Li Zhang ,&nbsp;Yiwang Huang ,&nbsp;Kaibei Peng ,&nbsp;Yanyun Qu","doi":"10.1016/j.compag.2025.110325","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pest detection is crucial for ensuring high crop yields. However, existing pest detection models often fail to effectively extract multi-scale features and suppress noise interference from pest images, leading to suboptimal detection performance. To address these limitations, we propose a Multi-band Multi-scale Detection Transformer (M2DETR) model. The core of M2DETR is a novel Multi-band Multi-scale Denoising (MMD) encoder, which integrates Multi-scale Feature Enhancement and Denoising (MFED) modules and Multi-band Multi-scale Downsampling and Denoising (MMDD) modules. Both modules are built upon Cross-scale Convolutional Attention Denoising (CCAD) blocks, designed to filter noise from input feature maps. This enables the MMD encoder to extract high-quality multi-band multi-scale features for the subsequent decoder. Extensive experiments on two public datasets demonstrate the superiority of M2DETR. On the COCO dataset, M2DETR achieves an average precision (AP) of 53.4% and an AP for small objects (AP<span><math><msub><mrow></mrow><mrow><mtext>S</mtext></mrow></msub></math></span>) of 35.6%, surpassing DINO-DETR by 2.5% and 1.0%, respectively. On the IP102 pest dataset, M2DETR outperforms YOLO-Pest by 5.6% in AP50 and exceeds RT-DETR by 1.7% and 1.2% in AP50 and AP, respectively. Moreover, M2DETR exhibits superior noise resistance compared to state-of-the-art models. Our code is available at <span><span>https://github.com/tanwb/M2DETR-master</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"235 ","pages":"Article 110325"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925004314","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate pest detection is crucial for ensuring high crop yields. However, existing pest detection models often fail to effectively extract multi-scale features and suppress noise interference from pest images, leading to suboptimal detection performance. To address these limitations, we propose a Multi-band Multi-scale Detection Transformer (M2DETR) model. The core of M2DETR is a novel Multi-band Multi-scale Denoising (MMD) encoder, which integrates Multi-scale Feature Enhancement and Denoising (MFED) modules and Multi-band Multi-scale Downsampling and Denoising (MMDD) modules. Both modules are built upon Cross-scale Convolutional Attention Denoising (CCAD) blocks, designed to filter noise from input feature maps. This enables the MMD encoder to extract high-quality multi-band multi-scale features for the subsequent decoder. Extensive experiments on two public datasets demonstrate the superiority of M2DETR. On the COCO dataset, M2DETR achieves an average precision (AP) of 53.4% and an AP for small objects (APS) of 35.6%, surpassing DINO-DETR by 2.5% and 1.0%, respectively. On the IP102 pest dataset, M2DETR outperforms YOLO-Pest by 5.6% in AP50 and exceeds RT-DETR by 1.7% and 1.2% in AP50 and AP, respectively. Moreover, M2DETR exhibits superior noise resistance compared to state-of-the-art models. Our code is available at https://github.com/tanwb/M2DETR-master.

Abstract Image

M2DETR:用于害虫检测的多波段多尺度检测变压器
准确的害虫检测对确保作物高产至关重要。然而,现有的害虫检测模型往往不能有效地提取害虫图像中的多尺度特征和抑制噪声干扰,导致检测性能不理想。为了解决这些限制,我们提出了一个多频段多尺度检测变压器(M2DETR)模型。M2DETR的核心是一种新型的多频段多尺度去噪(MMD)编码器,它集成了多频段多尺度特征增强与去噪(MFED)模块和多频段多尺度降采样与去噪(MMDD)模块。这两个模块都建立在交叉尺度卷积注意去噪(CCAD)块上,旨在从输入特征映射中过滤噪声。这使得MMD编码器能够为随后的解码器提取高质量的多频段多尺度特征。在两个公共数据集上的大量实验证明了M2DETR的优越性。在COCO数据集上,M2DETR的平均精度(AP)为53.4%,小目标的AP (APS)为35.6%,分别比DINO-DETR高2.5%和1.0%。在IP102害虫数据集上,M2DETR在AP50和AP中分别比ylo - pest高出5.6%,比RT-DETR高出1.7%和1.2%。此外,与最先进的型号相比,M2DETR具有优越的抗噪声性能。我们的代码可在https://github.com/tanwb/M2DETR-master上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信