{"title":"On a holistic variational formulation for material modeling including dissipative evolution","authors":"Philipp Junker , Tobias Bode , Klaus Hackl","doi":"10.1016/j.jmps.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Based on Hamilton’s principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1<span><math><mi>st</mi></math></span> and 2<span><math><mi>nd</mi></math></span> Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106133"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on Hamilton’s principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1 and 2 Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.