Ezequiel Santillan , Soheil A Neshat , Stefan Wuertz
{"title":"Disturbance and stability dynamics in microbial communities for environmental biotechnology applications","authors":"Ezequiel Santillan , Soheil A Neshat , Stefan Wuertz","doi":"10.1016/j.copbio.2025.103304","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial communities are corner stones of environmental biotechnology, driving essential processes such as waste degradation, pollutant removal, and nutrient cycling, all fundamental to industrial bioprocesses and sustainability. The structure and functions of these communities are influenced by environmental disturbances, which can arise from changes in operational conditions. Understanding disturbance–stability dynamics, including the roles of rare taxa and gene potential, is crucial for optimizing processes such as wastewater treatment, bioenergy production, and environmental bioremediation. This review highlights recent theoretical, technical, and experimental advances — including ecological theory, multiscale approaches, and the use of machine learning and artificial intelligence — to predict community responses to disturbances. Together, these insights offer a valuable outlook for developing scalable and robust biotechnology applications.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"93 ","pages":"Article 103304"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000485","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial communities are corner stones of environmental biotechnology, driving essential processes such as waste degradation, pollutant removal, and nutrient cycling, all fundamental to industrial bioprocesses and sustainability. The structure and functions of these communities are influenced by environmental disturbances, which can arise from changes in operational conditions. Understanding disturbance–stability dynamics, including the roles of rare taxa and gene potential, is crucial for optimizing processes such as wastewater treatment, bioenergy production, and environmental bioremediation. This review highlights recent theoretical, technical, and experimental advances — including ecological theory, multiscale approaches, and the use of machine learning and artificial intelligence — to predict community responses to disturbances. Together, these insights offer a valuable outlook for developing scalable and robust biotechnology applications.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.