Sm3+/Eu3+ Co-doped AgGd(MoO4)2 and AgGd(WO4)2: Multifunctional platforms for luminescent sensing of MnO4− and amoxicillin degradation in water

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Swaita Devi, Charanjeet Sen, Nidhi Bhagat, Niharika, Haq Nawaz Sheikh
{"title":"Sm3+/Eu3+ Co-doped AgGd(MoO4)2 and AgGd(WO4)2: Multifunctional platforms for luminescent sensing of MnO4− and amoxicillin degradation in water","authors":"Swaita Devi,&nbsp;Charanjeet Sen,&nbsp;Nidhi Bhagat,&nbsp;Niharika,&nbsp;Haq Nawaz Sheikh","doi":"10.1016/j.jssc.2025.125368","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of industrial contaminants in aquatic environments, particularly metal ions and organic pollutants, poses significant risks to human health and the ecosystem globally. This has led to the development of multifunctional nanoparticles with dual capabilities: luminescent detection and photocatalytic degradation of hazardous contaminants. In this study, we present the development of Sm<sup>3+</sup>/Eu<sup>3+</sup> co-doped AgGd(MoO<sub>4</sub>)<sub>2</sub> and AgGd(WO<sub>4</sub>)<sub>2</sub> (Sm<sup>3+</sup> = 5 %, Eu<sup>3+</sup> = 7 %) nanomaterials, synthesized <em>via</em> a hydrothermal method, and assessed their performance in luminescence-based detection of MnO<sub>4</sub><sup>−</sup> anions and photocatalytic degradation of antibiotics in water. The luminescent properties of AgGd(MoO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>/Eu<sup>3+</sup> demonstrated exceptional sensitivity and selectivity for detecting MnO<sub>4</sub><sup>−</sup> anions in aqueous solutions, with a significant quenching of the emission band at 620 nm upon the introduction of varying concentrations of MnO<sub>4</sub><sup>−</sup>. The nanosensor achieved limit of detection of 0.43 ppm and exhibited a Stern-Volmer (K<sub>sv</sub>) quenching constant of 3.61 × 10<sup>4</sup> M<sup>−1</sup> for MnO<sub>4</sub><sup>−</sup> anions, showcasing its excellent selectivity and sensitivity toward MnO<sub>4</sub><sup>−</sup> detection. Additionally, AgGd(WO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>/Eu<sup>3+</sup> nanoparticles exhibited superior photocatalytic activity in the degradation of amoxicillin (AMX) in an aqueous environment. UV–Vis spectroscopy data suggested that the AgGd(WO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>/Eu<sup>3+</sup> nanoparticles outperform AgGd(MoO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>/Eu<sup>3+</sup> nanoparticles as nanocatalysts. The AgGd(WO<sub>4</sub>)<sub>2</sub>:Sm<sup>3+</sup>/Eu<sup>3+</sup> nanomaterial achieved an efficiency of approximately 94.8 % in degrading AMX under 90 min of UV light exposure, and demonstrated remarkable stability after five consecutive catalytic cycles. This work introduces a novel approach to simultaneous luminescent detection and photocatalytic degradation by utilizing Sm<sup>3+</sup>/Eu<sup>3+</sup> co-doped AgGd(MoO<sub>4</sub>)<sub>2</sub> and AgGd(WO<sub>4</sub>)<sub>2</sub> nanomaterials, highlighting their unique potential for environmental monitoring and remediation. The combination of high sensitivity for MnO<sub>4</sub><sup>−</sup> detection and superior photocatalytic degradation of antibiotics represents a significant advancement in multifunctional nanomaterials, providing a dual-function solution to address critical environmental contamination challenges.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"348 ","pages":"Article 125368"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001914","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of industrial contaminants in aquatic environments, particularly metal ions and organic pollutants, poses significant risks to human health and the ecosystem globally. This has led to the development of multifunctional nanoparticles with dual capabilities: luminescent detection and photocatalytic degradation of hazardous contaminants. In this study, we present the development of Sm3+/Eu3+ co-doped AgGd(MoO4)2 and AgGd(WO4)2 (Sm3+ = 5 %, Eu3+ = 7 %) nanomaterials, synthesized via a hydrothermal method, and assessed their performance in luminescence-based detection of MnO4 anions and photocatalytic degradation of antibiotics in water. The luminescent properties of AgGd(MoO4)2:Sm3+/Eu3+ demonstrated exceptional sensitivity and selectivity for detecting MnO4 anions in aqueous solutions, with a significant quenching of the emission band at 620 nm upon the introduction of varying concentrations of MnO4. The nanosensor achieved limit of detection of 0.43 ppm and exhibited a Stern-Volmer (Ksv) quenching constant of 3.61 × 104 M−1 for MnO4 anions, showcasing its excellent selectivity and sensitivity toward MnO4 detection. Additionally, AgGd(WO4)2:Sm3+/Eu3+ nanoparticles exhibited superior photocatalytic activity in the degradation of amoxicillin (AMX) in an aqueous environment. UV–Vis spectroscopy data suggested that the AgGd(WO4)2:Sm3+/Eu3+ nanoparticles outperform AgGd(MoO4)2:Sm3+/Eu3+ nanoparticles as nanocatalysts. The AgGd(WO4)2:Sm3+/Eu3+ nanomaterial achieved an efficiency of approximately 94.8 % in degrading AMX under 90 min of UV light exposure, and demonstrated remarkable stability after five consecutive catalytic cycles. This work introduces a novel approach to simultaneous luminescent detection and photocatalytic degradation by utilizing Sm3+/Eu3+ co-doped AgGd(MoO4)2 and AgGd(WO4)2 nanomaterials, highlighting their unique potential for environmental monitoring and remediation. The combination of high sensitivity for MnO4 detection and superior photocatalytic degradation of antibiotics represents a significant advancement in multifunctional nanomaterials, providing a dual-function solution to address critical environmental contamination challenges.

Abstract Image

Sm3+/Eu3+共掺杂AgGd(MoO4)2和AgGd(WO4)2:荧光传感水中MnO4−和阿莫西林降解的多功能平台
工业污染物在水生环境中的积累,特别是金属离子和有机污染物,对全球人类健康和生态系统构成重大风险。这导致了多功能纳米颗粒的发展,具有双重能力:发光检测和光催化降解有害污染物。在本研究中,我们通过水热法合成了Sm3+/Eu3+共掺杂的AgGd(MoO4)2和AgGd(WO4)2 (Sm3+ = 5%, Eu3+ = 7%)纳米材料,并评估了它们在基于发光检测MnO4−阴离子和光催化降解水中抗生素方面的性能。AgGd(MoO4)2:Sm3+/Eu3+的发光特性对水溶液中MnO4 -阴离子的检测表现出优异的灵敏度和选择性,在引入不同浓度的MnO4 -时,其发射带在620 nm处明显猝灭。该传感器对MnO4 -阴离子的检测限为0.43 ppm,猝灭常数为3.61 × 104 M−1,对MnO4 -的检测具有良好的选择性和灵敏度。此外,AgGd(WO4)2:Sm3+/Eu3+纳米颗粒在水环境中降解阿莫西林(AMX)表现出优异的光催化活性。紫外可见光谱数据表明,AgGd(WO4)2:Sm3+/Eu3+纳米颗粒作为纳米催化剂的性能优于AgGd(MoO4)2:Sm3+/Eu3+纳米颗粒。AgGd(WO4)2:Sm3+/Eu3+纳米材料在紫外光照射90 min下降解AMX的效率约为94.8%,并且在连续5次催化循环后表现出显著的稳定性。本文介绍了一种利用Sm3+/Eu3+共掺杂AgGd(MoO4)2和AgGd(WO4)2纳米材料进行同步发光检测和光催化降解的新方法,突出了它们在环境监测和修复方面的独特潜力。高灵敏度的MnO4 -检测和优越的光催化降解抗生素的结合代表了多功能纳米材料的重大进步,为解决关键的环境污染挑战提供了双重功能解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信