Predictive modeling and optimization of CIGS thin film solar cells: A machine learning approach

IF 6 2区 工程技术 Q2 ENERGY & FUELS
K.R. Kumbhar , R.S. Redekar , A.B. Raule , P.M. Shirage , J.H. Jang , N.L. Tarwal
{"title":"Predictive modeling and optimization of CIGS thin film solar cells: A machine learning approach","authors":"K.R. Kumbhar ,&nbsp;R.S. Redekar ,&nbsp;A.B. Raule ,&nbsp;P.M. Shirage ,&nbsp;J.H. Jang ,&nbsp;N.L. Tarwal","doi":"10.1016/j.solener.2025.113509","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs Machine Learning (ML) techniques to optimize the fabrication of Copper Indium Gallium Selenide (CIGS) thin-film solar cells and enhance their efficiency. An extensive dataset encompassing over 5000 data points from CIGS solar cell fabrication experiments is analyzed using various ML algorithms such as Artificial Neural Network (ANN), and Random Forest (RF). RF emerge as the most effective model, achieving adjusted R-squared values exceeding 0.87 for all the outputs, predicting key solar cell performance metrics, while ANN with R<sup>2</sup> less than 0.68 for all the outputs, underperformed. Feature importance analysis based on RF revealed that compositional ratios of precursor materials, particularly Ga/(In + Ga) and Cu/(In + Ga), followed by RTA temperature and i-ZnO thickness, are the most critical factors influencing device performance. A decision tree model provide detailed insights into optimal compositional ratios and fabrication conditions, suggesting RTA temperatures around 475 °C and i-ZnO thicknesses of approximately 50 nm for maximizing efficiency. This machine learning-driven approach offers a powerful tool for guiding CIGS solar cell fabrication, potentially accelerating the optimization process and advancing thin-film photovoltaic technology.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"294 ","pages":"Article 113509"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25002725","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs Machine Learning (ML) techniques to optimize the fabrication of Copper Indium Gallium Selenide (CIGS) thin-film solar cells and enhance their efficiency. An extensive dataset encompassing over 5000 data points from CIGS solar cell fabrication experiments is analyzed using various ML algorithms such as Artificial Neural Network (ANN), and Random Forest (RF). RF emerge as the most effective model, achieving adjusted R-squared values exceeding 0.87 for all the outputs, predicting key solar cell performance metrics, while ANN with R2 less than 0.68 for all the outputs, underperformed. Feature importance analysis based on RF revealed that compositional ratios of precursor materials, particularly Ga/(In + Ga) and Cu/(In + Ga), followed by RTA temperature and i-ZnO thickness, are the most critical factors influencing device performance. A decision tree model provide detailed insights into optimal compositional ratios and fabrication conditions, suggesting RTA temperatures around 475 °C and i-ZnO thicknesses of approximately 50 nm for maximizing efficiency. This machine learning-driven approach offers a powerful tool for guiding CIGS solar cell fabrication, potentially accelerating the optimization process and advancing thin-film photovoltaic technology.

Abstract Image

CIGS薄膜太阳能电池的预测建模与优化:一种机器学习方法
本研究采用机器学习(ML)技术来优化铜铟硒化镓(CIGS)薄膜太阳能电池的制造并提高其效率。使用各种ML算法(如人工神经网络(ANN)和随机森林(RF))分析来自CIGS太阳能电池制造实验的超过5000个数据点的广泛数据集。RF是最有效的模型,所有输出的调整后r平方值超过0.87,预测关键的太阳能电池性能指标,而ANN的所有输出的R2小于0.68,表现不佳。基于射频的特征重要性分析表明,前驱体材料的组成比,特别是Ga/(In + Ga)和Cu/(In + Ga),其次是RTA温度和i-ZnO厚度,是影响器件性能的最关键因素。决策树模型提供了最佳组成比和制造条件的详细见解,建议RTA温度约为475°C, i-ZnO厚度约为50 nm以最大化效率。这种机器学习驱动的方法为指导CIGS太阳能电池制造提供了强大的工具,有可能加速优化过程并推进薄膜光伏技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信