Stroboscopic averaging methods to study autoresonance and other problems with slowly varying forcing frequencies

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
M.P. Calvo , J.M. Sanz-Serna , Beibei Zhu
{"title":"Stroboscopic averaging methods to study autoresonance and other problems with slowly varying forcing frequencies","authors":"M.P. Calvo ,&nbsp;J.M. Sanz-Serna ,&nbsp;Beibei Zhu","doi":"10.1016/j.apnum.2025.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>Autoresonance is a phenomenon of physical interest that may take place when a nonlinear oscillator is forced at a frequency that varies slowly. The stroboscopic averaging method (SAM), which provides an efficient numerical technique for the integration of highly oscillatory systems, cannot be used directly to study autoresonance due to the slow changes of the forcing frequency. We study how to modify SAM to cater for such slow variations. Numerical experiments show the computational advantages of using SAM.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"215 ","pages":"Pages 15-24"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Autoresonance is a phenomenon of physical interest that may take place when a nonlinear oscillator is forced at a frequency that varies slowly. The stroboscopic averaging method (SAM), which provides an efficient numerical technique for the integration of highly oscillatory systems, cannot be used directly to study autoresonance due to the slow changes of the forcing frequency. We study how to modify SAM to cater for such slow variations. Numerical experiments show the computational advantages of using SAM.
频闪平均法研究自共振和其他强迫频率缓慢变化的问题
自共振是一种物理现象,当非线性振荡器被强迫以缓慢变化的频率时,可能会发生这种现象。频闪平均法(SAM)为高振荡系统的积分提供了一种有效的数值计算方法,但由于强迫频率变化缓慢,不能直接用于研究自共振。我们研究如何修改SAM以适应这种缓慢的变化。数值实验证明了采用SAM的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信