Yongxing Diao , Guangxing Hu , Shuang Cui , Yan Shi , Hongda Wang , Zhuang Li
{"title":"Waste corn stalk-derived biomass carbon materials as two-electron ORR electrocatalysts for dye contaminant degradation and water disinfection","authors":"Yongxing Diao , Guangxing Hu , Shuang Cui , Yan Shi , Hongda Wang , Zhuang Li","doi":"10.1016/j.biortech.2025.132512","DOIUrl":null,"url":null,"abstract":"<div><div>Porous carbon materials as efficient two-electron oxygen reduction reaction (ORR) electrocatalysts for on-situ production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is one of the promising alternatives to the traditional anthraquinone process. Herein, waste corn stalks-derived porous carbon composites (CSDC-O, Fe/CSDC-O-12) were developed as two-electron ORR electrocatalysts for H<sub>2</sub>O<sub>2</sub> generation and the further organic dye pollutants degradation and water disinfection. The high-temperature pyrolysis and oxidation treatment enriched the hierarchical porous structure of the biomass carbon materials, improved graphitization degree and the content of oxygen-containing functional groups, which facilitated the increase of active sites density, the mass and charge transfer rates acceleration, and the active and selective H<sub>2</sub>O<sub>2</sub> generation. Based on the remarkable two-electron ORR selectivity and long-term stability in both alkaline and acidic media exhibited by Fe/CSDC-O-12, it was used to completely degrade 25 mg L<sup>−1</sup> of rhodamine B and methyl orange within 70 and 80 min, respectively. Moreover, the CSDC-O electrocatalyst demonstrated disinfection efficiency exceeding 99.9999 % against Escherichia coli and Staphylococcus aureus within 20 and 60 min, respectively. Thus, our work provides a feasibility verification for the transformation of abundant biomass corn stalk waste into low-cost, sustainable, and high-value-added two-electron ORR electrocatalysts, and expand their application in dye contaminant degradation and water disinfection.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"429 ","pages":"Article 132512"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096085242500478X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Porous carbon materials as efficient two-electron oxygen reduction reaction (ORR) electrocatalysts for on-situ production of hydrogen peroxide (H2O2) is one of the promising alternatives to the traditional anthraquinone process. Herein, waste corn stalks-derived porous carbon composites (CSDC-O, Fe/CSDC-O-12) were developed as two-electron ORR electrocatalysts for H2O2 generation and the further organic dye pollutants degradation and water disinfection. The high-temperature pyrolysis and oxidation treatment enriched the hierarchical porous structure of the biomass carbon materials, improved graphitization degree and the content of oxygen-containing functional groups, which facilitated the increase of active sites density, the mass and charge transfer rates acceleration, and the active and selective H2O2 generation. Based on the remarkable two-electron ORR selectivity and long-term stability in both alkaline and acidic media exhibited by Fe/CSDC-O-12, it was used to completely degrade 25 mg L−1 of rhodamine B and methyl orange within 70 and 80 min, respectively. Moreover, the CSDC-O electrocatalyst demonstrated disinfection efficiency exceeding 99.9999 % against Escherichia coli and Staphylococcus aureus within 20 and 60 min, respectively. Thus, our work provides a feasibility verification for the transformation of abundant biomass corn stalk waste into low-cost, sustainable, and high-value-added two-electron ORR electrocatalysts, and expand their application in dye contaminant degradation and water disinfection.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.