How to measure functional connectivity using resting-state fMRI? A comprehensive empirical exploration of different connectivity metrics

IF 4.7 2区 医学 Q1 NEUROIMAGING
Lukas Roell , Stephan Wunderlich , David Roell , Florian Raabe , Elias Wagner , Zhuanghua Shi , Andrea Schmitt , Peter Falkai , Sophia Stoecklein , Daniel Keeser
{"title":"How to measure functional connectivity using resting-state fMRI? A comprehensive empirical exploration of different connectivity metrics","authors":"Lukas Roell ,&nbsp;Stephan Wunderlich ,&nbsp;David Roell ,&nbsp;Florian Raabe ,&nbsp;Elias Wagner ,&nbsp;Zhuanghua Shi ,&nbsp;Andrea Schmitt ,&nbsp;Peter Falkai ,&nbsp;Sophia Stoecklein ,&nbsp;Daniel Keeser","doi":"10.1016/j.neuroimage.2025.121195","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Functional connectivity in the context of functional magnetic resonance imaging is typically quantified by Pearson´s or partial correlation between regional time series of the blood oxygenation level dependent signal. However, a recent interdisciplinary methodological work proposes &gt;230 different metrics to measure similarity between different types of time series.</div></div><div><h3>Objective</h3><div>Hence, we systematically evaluated how the results of typical research approaches in functional neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.</div></div><div><h3>Methods</h3><div>We addressed both research questions using four independent neuroimaging datasets, comprising multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate functional connectivity using 20 representative metrics from four distinct mathematical domains. We further used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.</div></div><div><h3>Results</h3><div>First, our findings demonstrate that the results of typical functional neuroimaging approaches differ fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive decline.</div></div><div><h3>Conclusion</h3><div>Our empirical evaluation supports a recent theoretical functional connectivity framework. Future functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the methodological property to assess the theoretical property, and the confounding property that may bias the conclusions.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"312 ","pages":"Article 121195"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001983","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Functional connectivity in the context of functional magnetic resonance imaging is typically quantified by Pearson´s or partial correlation between regional time series of the blood oxygenation level dependent signal. However, a recent interdisciplinary methodological work proposes >230 different metrics to measure similarity between different types of time series.

Objective

Hence, we systematically evaluated how the results of typical research approaches in functional neuroimaging vary depending on the functional connectivity metric of choice. We further explored which metrics most accurately detect presumed reductions in connectivity related to age and malignant brain tumors, aiming to initiate a debate on the best approaches for assessing brain connectivity in functional neuroimaging research.

Methods

We addressed both research questions using four independent neuroimaging datasets, comprising multimodal data from a total of 1187 individuals. We analyzed resting-state functional sequences to calculate functional connectivity using 20 representative metrics from four distinct mathematical domains. We further used T1- and T2-weighted images to compute regional brain volumes, diffusion-weighted imaging data to build structural connectomes, and pseudo-continuous arterial spin labeling to measure regional brain perfusion.

Results

First, our findings demonstrate that the results of typical functional neuroimaging approaches differ fundamentally depending on the functional connectivity metric of choice. Second, we show that correlational and distance metrics are most appropriate to cover reductions in connectivity linked to aging. In this context, partial correlation performs worse than other correlational metrics. Third, our findings suggest that the FC metric of choice depends on the utilized scanning parameters, the regions of interest, and the individual investigated. Lastly, beyond the major objective of this study, we provide evidence in favor of brain perfusion measured via pseudo-continuous arterial spin labeling as a robust neural entity mirroring age-related neural and cognitive decline.

Conclusion

Our empirical evaluation supports a recent theoretical functional connectivity framework. Future functional imaging studies need to comprehensively define the study-specific theoretical property of interest, the methodological property to assess the theoretical property, and the confounding property that may bias the conclusions.
如何使用静息状态fMRI测量功能连接?对不同连接指标的全面实证探索
在功能磁共振成像的背景下,功能连通性通常是通过Pearson’s或血氧水平相关信号的区域时间序列之间的部分相关来量化的。然而,最近一项跨学科的方法论工作提出了230种不同的度量标准来衡量不同类型时间序列之间的相似性。因此,我们系统地评估了功能神经成像中典型研究方法的结果如何根据选择的功能连接度量而变化。我们进一步探讨了哪些指标最准确地检测到与年龄和恶性脑肿瘤相关的假定连接减少,旨在就功能性神经影像学研究中评估大脑连接的最佳方法展开辩论。方法:我们使用四个独立的神经影像学数据集来解决这两个研究问题,这些数据集包括来自总共1187名个体的多模态数据。我们分析了静息状态功能序列,使用来自四个不同数学领域的20个代表性指标来计算功能连通性。我们进一步使用T1和t2加权图像计算区域脑容量,扩散加权成像数据构建结构连接体,伪连续动脉自旋标记测量区域脑灌注。首先,我们的研究结果表明,典型的功能性神经成像方法的结果根据所选择的功能连接指标而有根本性的不同。其次,我们表明相关性和距离指标最适合覆盖与衰老相关的连通性减少。在这种情况下,部分相关比其他相关度量执行得更差。第三,我们的研究结果表明,选择的FC指标取决于所利用的扫描参数、感兴趣的区域和所调查的个体。最后,除了本研究的主要目的之外,我们还提供了支持通过伪连续动脉自旋标记测量脑灌注作为反映年龄相关的神经和认知衰退的强大神经实体的证据。结论我们的实证评价支持了一个最新的理论功能连接框架。未来的功能成像研究需要全面定义研究特定的理论特性,评估理论特性的方法学特性,以及可能导致结论偏差的混杂特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信