Jindong Sun , Caizhu Wang , Haoyu Wen , Qian Yin , Jiaci Fan
{"title":"Synergistic effects of magnetic fields and flow velocity on hydrogen bubble dynamics in water electrolysis","authors":"Jindong Sun , Caizhu Wang , Haoyu Wen , Qian Yin , Jiaci Fan","doi":"10.1016/j.elecom.2025.107918","DOIUrl":null,"url":null,"abstract":"<div><div>By systematically regulating the magnetic field intensity and electrolyte flow rate, this study investigates the coupling effects of magnetic fields and flow velocity on hydrogen bubble dynamics during water electrolysis. A model of hydrogen bubble dynamics was used to analyze nucleation, growth, and detachment mechanisms under magnetic-flow coupling, determining key parameters such as growth radius and detachment speed. The dynamic evolution of hydrogen bubbles was comprehensively analyzed under both static and dynamic flow conditions. Electrochemical measurements revealed that increasing the magnetic field intensity from 0 T to 0.3 T enhanced the current density by 9.61 % at 0 cm/s and 6.67 % at 1 cm/s flow rates. These results suggest that magnetic-flow coupling reduces concentration polarization and overpotential. However, the enhancement effect gradually diminished with increasing flow velocity. Visualization experiments further confirmed that the coupling between magnetic field and flow velocity significantly promoted bubble oscillation, coalescence, and detachment, thereby improving electrolysis performance.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"176 ","pages":"Article 107918"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
By systematically regulating the magnetic field intensity and electrolyte flow rate, this study investigates the coupling effects of magnetic fields and flow velocity on hydrogen bubble dynamics during water electrolysis. A model of hydrogen bubble dynamics was used to analyze nucleation, growth, and detachment mechanisms under magnetic-flow coupling, determining key parameters such as growth radius and detachment speed. The dynamic evolution of hydrogen bubbles was comprehensively analyzed under both static and dynamic flow conditions. Electrochemical measurements revealed that increasing the magnetic field intensity from 0 T to 0.3 T enhanced the current density by 9.61 % at 0 cm/s and 6.67 % at 1 cm/s flow rates. These results suggest that magnetic-flow coupling reduces concentration polarization and overpotential. However, the enhancement effect gradually diminished with increasing flow velocity. Visualization experiments further confirmed that the coupling between magnetic field and flow velocity significantly promoted bubble oscillation, coalescence, and detachment, thereby improving electrolysis performance.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.