Metagenomics and plant-microbe symbioses: Microbial community dynamics, functional roles in carbon sequestration, nitrogen transformation, sulfur and phosphorus mobilization for sustainable soil health
IF 12.1 1区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Metagenomics and plant-microbe symbioses: Microbial community dynamics, functional roles in carbon sequestration, nitrogen transformation, sulfur and phosphorus mobilization for sustainable soil health","authors":"Atif Khurshid Wani , Fayzan Qadir , Noureddine Elboughdiri , Farida Rahayu , Saefudin , Dibyo Pranowo , Chaireni Martasari , Mia Kosmiatin , Cece Suhara , Tri Sudaryono , Yusmani Prayogo , Krishna Kumar Yadav , Khursheed Muzammil , Lienda Bashier Eltayeb , Maha Awjan Alreshidi , Reena Singh","doi":"10.1016/j.biotechadv.2025.108580","DOIUrl":null,"url":null,"abstract":"<div><div>Biogeochemical cycles are fundamental processes that regulate the flow of essential elements such as carbon, nitrogen, and phosphorus, sustaining ecosystem productivity and global biogeochemical equilibrium. These cycles are intricately influenced by plant-microbe symbioses, which facilitate nutrient acquisition, organic matter decomposition, and the transformation of soil nutrients. Through mutualistic interactions, plants and microbes co-regulate nutrient availability and promote ecosystem resilience, especially under environmental stress. Metagenomics has emerged as a transformative tool for deciphering the complex microbial communities and functional genes driving these cycles. By enabling the high-throughput sequencing and annotation of microbial genomes, metagenomics provides unparalleled insights into the taxonomic diversity, metabolic potential, and functional pathways underlying microbial contributions to biogeochemical processes. Unlike previous reviews, this work integrates recent advancements in metagenomics with complementary omics approaches to provide a comprehensive perspective on how plant-microbe interactions modulate biogeochemical cycles at molecular, genetic, and ecosystem levels. By highlighting novel microbial processes and potential biotechnological applications, this review aims to guide future research in leveraging plant-microbe symbioses for sustainable agriculture, ecosystem restoration, and climate change mitigation.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"82 ","pages":"Article 108580"},"PeriodicalIF":12.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000667","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biogeochemical cycles are fundamental processes that regulate the flow of essential elements such as carbon, nitrogen, and phosphorus, sustaining ecosystem productivity and global biogeochemical equilibrium. These cycles are intricately influenced by plant-microbe symbioses, which facilitate nutrient acquisition, organic matter decomposition, and the transformation of soil nutrients. Through mutualistic interactions, plants and microbes co-regulate nutrient availability and promote ecosystem resilience, especially under environmental stress. Metagenomics has emerged as a transformative tool for deciphering the complex microbial communities and functional genes driving these cycles. By enabling the high-throughput sequencing and annotation of microbial genomes, metagenomics provides unparalleled insights into the taxonomic diversity, metabolic potential, and functional pathways underlying microbial contributions to biogeochemical processes. Unlike previous reviews, this work integrates recent advancements in metagenomics with complementary omics approaches to provide a comprehensive perspective on how plant-microbe interactions modulate biogeochemical cycles at molecular, genetic, and ecosystem levels. By highlighting novel microbial processes and potential biotechnological applications, this review aims to guide future research in leveraging plant-microbe symbioses for sustainable agriculture, ecosystem restoration, and climate change mitigation.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.