Integrated multimodal analysis for high-accuracy anxiety disease subtype classification

IF 2.1 4区 医学 Q3 CLINICAL NEUROLOGY
Ying Chen , Yibin Tang , Qinghua Ni , Yuan Gao , Chun Wang
{"title":"Integrated multimodal analysis for high-accuracy anxiety disease subtype classification","authors":"Ying Chen ,&nbsp;Yibin Tang ,&nbsp;Qinghua Ni ,&nbsp;Yuan Gao ,&nbsp;Chun Wang","doi":"10.1016/j.pscychresns.2025.111991","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a classification method for identifying subtypes of anxiety disorders (AD). A large dataset is built with 108 healthy controls and 179 subjects from four primary AD subtypes: generalized anxiety disorder (GAD), social anxiety disorder (SAD), panic disorder (PD), and specific phobia (SP). We calculate diverse multimodal data, including amplitude of low-frequency fluctuations, regional homogeneity, and voxel-based morphometry, and create brain gradient data to provide a comprehensive representation of these data. For subtype classification, we develop a hierarchical binary hypothesis testing (H-BHT) framework with a two-stage scheme. In the first stage, we use a traditional BHT method to identify AD individuals. In the second stage, we categorize AD subjects into different subtypes under multi-class hypotheses. Our experiments demonstrate that the gradient data outperforms single-modal data in subtype classification, achieving an impressive 97.9% accuracy. When performing a multivariate analysis of variance on the brain regions associated with the discriminative gradient data, it reveals significant biomarkers among the subtypes, including the insula, amygdala, orbital inferior frontal, middle frontal and anterior cingulate gyri. These regions are strongly correlated with emotion control, providing substantial support for the pathogenesis of existing AD subtypes and confirming the validity of our method.</div></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"349 ","pages":"Article 111991"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925492725000460","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a classification method for identifying subtypes of anxiety disorders (AD). A large dataset is built with 108 healthy controls and 179 subjects from four primary AD subtypes: generalized anxiety disorder (GAD), social anxiety disorder (SAD), panic disorder (PD), and specific phobia (SP). We calculate diverse multimodal data, including amplitude of low-frequency fluctuations, regional homogeneity, and voxel-based morphometry, and create brain gradient data to provide a comprehensive representation of these data. For subtype classification, we develop a hierarchical binary hypothesis testing (H-BHT) framework with a two-stage scheme. In the first stage, we use a traditional BHT method to identify AD individuals. In the second stage, we categorize AD subjects into different subtypes under multi-class hypotheses. Our experiments demonstrate that the gradient data outperforms single-modal data in subtype classification, achieving an impressive 97.9% accuracy. When performing a multivariate analysis of variance on the brain regions associated with the discriminative gradient data, it reveals significant biomarkers among the subtypes, including the insula, amygdala, orbital inferior frontal, middle frontal and anterior cingulate gyri. These regions are strongly correlated with emotion control, providing substantial support for the pathogenesis of existing AD subtypes and confirming the validity of our method.
高精度焦虑症亚型分类的综合多模态分析
在这项研究中,我们提出了一种识别焦虑症(AD)亚型的分类方法。建立了一个大型数据集,包括108名健康对照和179名来自四种主要AD亚型的受试者:广泛性焦虑障碍(GAD)、社交焦虑障碍(SAD)、恐慌障碍(PD)和特定恐惧症(SP)。我们计算了不同的多模态数据,包括低频波动幅度、区域均匀性和基于体素的形态测量,并创建了脑梯度数据,以提供这些数据的综合表示。对于亚型分类,我们开发了一种具有两阶段方案的分层二元假设检验(H-BHT)框架。在第一阶段,我们使用传统的BHT方法来识别AD个体。在第二阶段,我们在多类别假设下将AD主体划分为不同的亚型。我们的实验表明,梯度数据在子类型分类方面优于单模态数据,达到了令人印象深刻的97.9%的准确率。当对与判别梯度数据相关的大脑区域进行多变量方差分析时,它揭示了不同亚型之间的显著生物标志物,包括脑岛、杏仁核、眶额下、额中和前扣带回。这些区域与情绪控制密切相关,为现有AD亚型的发病机制提供了大量支持,并证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychiatry Research: Neuroimaging
Psychiatry Research: Neuroimaging 医学-精神病学
CiteScore
3.80
自引率
0.00%
发文量
86
审稿时长
22.5 weeks
期刊介绍: The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信