Hongmei Wang , Renhuan Yao , Xiaoyan Zhang , Minghao Dong , Chenwang Jin
{"title":"Longitudinal study on the impact of short-term radiological interpretation training on resting-state brain network hubs","authors":"Hongmei Wang , Renhuan Yao , Xiaoyan Zhang , Minghao Dong , Chenwang Jin","doi":"10.1016/j.tine.2025.100252","DOIUrl":null,"url":null,"abstract":"<div><div>Radiological expertise develops through extensive experience in specific imaging modalities. While previous research has focused on long-term learning and neural mechanisms of expertise, the effects of short-term radiological training on resting-state neural networks remain underexplored. This study investigates the impact of four weeks of radiological interpretation training on resting-state neural networks in 32 radiology interns. Using behavioral assessments and resting-state fMRI data, a Recursive Feature Elimination Support Vector Machine (RFE-SVM) model achieved 82% accuracy in classifying data from the pre- and post-training phases. Key brain regions linked to attention, decision-making, working memory, and visual processing were identified, providing insights into how short-term training reshapes intrinsic brain networks and facilitates rapid adaptation to new skills. These findings also lay a theoretical foundation for designing more effective training programs.</div></div>","PeriodicalId":46228,"journal":{"name":"Trends in Neuroscience and Education","volume":"39 ","pages":"Article 100252"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neuroscience and Education","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211949325000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Radiological expertise develops through extensive experience in specific imaging modalities. While previous research has focused on long-term learning and neural mechanisms of expertise, the effects of short-term radiological training on resting-state neural networks remain underexplored. This study investigates the impact of four weeks of radiological interpretation training on resting-state neural networks in 32 radiology interns. Using behavioral assessments and resting-state fMRI data, a Recursive Feature Elimination Support Vector Machine (RFE-SVM) model achieved 82% accuracy in classifying data from the pre- and post-training phases. Key brain regions linked to attention, decision-making, working memory, and visual processing were identified, providing insights into how short-term training reshapes intrinsic brain networks and facilitates rapid adaptation to new skills. These findings also lay a theoretical foundation for designing more effective training programs.