{"title":"On a class of superlinear obstacle problems","authors":"Cong Wang","doi":"10.1016/j.jde.2025.113318","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the superlinear obstacle problem,<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mi>u</mi><mo>></mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where Ω is a smooth open bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, and the exponent <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span> satisfies the condition<span><span><span><math><mrow><mn>2</mn><mo><</mo><mi>p</mi><mo><</mo><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>as</mi></mrow><mspace></mspace><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>as</mi></mrow><mspace></mspace><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> is the Sobolev critical exponent of embedding <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>↪</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. We prove the existence of a non-minimizing solution and establish the optimal regularity of solutions to the aforementioned equation. Furthermore, utilizing blowup analysis, we derive the regularity of the free boundary at regular points and characterize the structure of the singular set.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113318"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003456","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the superlinear obstacle problem, where Ω is a smooth open bounded domain in , and the exponent satisfies the condition with is the Sobolev critical exponent of embedding when . We prove the existence of a non-minimizing solution and establish the optimal regularity of solutions to the aforementioned equation. Furthermore, utilizing blowup analysis, we derive the regularity of the free boundary at regular points and characterize the structure of the singular set.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics