On a class of superlinear obstacle problems

IF 2.4 2区 数学 Q1 MATHEMATICS
Cong Wang
{"title":"On a class of superlinear obstacle problems","authors":"Cong Wang","doi":"10.1016/j.jde.2025.113318","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the superlinear obstacle problem,<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mi>u</mi><mo>&gt;</mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>in</mi></mrow><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where Ω is a smooth open bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, and the exponent <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span> satisfies the condition<span><span><span><math><mrow><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>as</mi></mrow><mspace></mspace><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>+</mo><mo>∞</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mi>as</mi></mrow><mspace></mspace><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> is the Sobolev critical exponent of embedding <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>↪</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. We prove the existence of a non-minimizing solution and establish the optimal regularity of solutions to the aforementioned equation. Furthermore, utilizing blowup analysis, we derive the regularity of the free boundary at regular points and characterize the structure of the singular set.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"434 ","pages":"Article 113318"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003456","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the superlinear obstacle problem,{Δu=(1up1)χ{u>0},inΩ,u0,inΩ,uW01,2(Ω), where Ω is a smooth open bounded domain in Rn,n2, and the exponent p>2 satisfies the condition2<p<{2,asn3,+,asn=2, with 2=2nn2 is the Sobolev critical exponent of embedding W01,2(Ω)Lq(Ω) when n3. We prove the existence of a non-minimizing solution and establish the optimal regularity of solutions to the aforementioned equation. Furthermore, utilizing blowup analysis, we derive the regularity of the free boundary at regular points and characterize the structure of the singular set.
一类超线性障碍问题
本文主要研究超线性障碍问题{Δu=(1−up−1)χ{u>0},inΩ,u≥0,inΩ,u∈W01,2(Ω),其中Ω是Rn上的光滑开有界域,n≥2,指数p>;2满足条件2<;p<{2,asn≥3,+∞,asn=2,其中2 =2nn−2是n≥3时嵌入W01,2(Ω)“Lq(Ω)”的Sobolev临界指数。证明了该方程非极小解的存在性,并建立了该方程解的最优正则性。在此基础上,利用爆破分析,导出了正则点处自由边界的正则性,并刻画了奇异集的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信