{"title":"Powder bed fusion 3D printing for drug delivery and healthcare applications","authors":"Suraj Kumar , Rishabha Malviya , Sathvik Belagodu Sridhar , Tarun Wadhwa , Umme Hani , Sirajunisa Talath , Musarrat Husain Warsi","doi":"10.1016/j.stlm.2025.100200","DOIUrl":null,"url":null,"abstract":"<div><div>Powder Bed Fusion (PBF) is a 3D printing technique that uses powdered materials, fused through various ignition sources, to create complex structures. Over time, PBF has evolved into several methods, including selective laser sintering/melting, direct metal laser sintering, electron beam melting, and multi-jet fusion. These advancements offer benefits such as improved resolution, faster printing speeds, and the ability to produce intricate designs without the need for additional support structures. This review examines the distinct roles and potential applications of PBF in pharmacology and biomedicine, focusing on the mechanisms behind the technology and its impact on personalized drug-loaded formulations, medical devices, and implants. PBF's versatility makes it ideal for biomedical applications, where precision and customization are essential. Its high resolution and speed enable the fabrication of detailed, individualized items, driving advancements in drug delivery and implant design. However, challenges remain, such as material constraints and the requirement for specific environmental conditions, which can influence product quality. This review emphasizes the innovative applications of PBF in pharmacology and biology and highlights its transformative potential in personalized medicine. By overcoming current limitations, PBF technology could further contribute to the development of advanced biomedicine and personalized treatment solutions.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"18 ","pages":"Article 100200"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Powder Bed Fusion (PBF) is a 3D printing technique that uses powdered materials, fused through various ignition sources, to create complex structures. Over time, PBF has evolved into several methods, including selective laser sintering/melting, direct metal laser sintering, electron beam melting, and multi-jet fusion. These advancements offer benefits such as improved resolution, faster printing speeds, and the ability to produce intricate designs without the need for additional support structures. This review examines the distinct roles and potential applications of PBF in pharmacology and biomedicine, focusing on the mechanisms behind the technology and its impact on personalized drug-loaded formulations, medical devices, and implants. PBF's versatility makes it ideal for biomedical applications, where precision and customization are essential. Its high resolution and speed enable the fabrication of detailed, individualized items, driving advancements in drug delivery and implant design. However, challenges remain, such as material constraints and the requirement for specific environmental conditions, which can influence product quality. This review emphasizes the innovative applications of PBF in pharmacology and biology and highlights its transformative potential in personalized medicine. By overcoming current limitations, PBF technology could further contribute to the development of advanced biomedicine and personalized treatment solutions.