{"title":"Specific selectivity of simple oxides towards CH4 activation","authors":"Donato Pinto , Atsushi Urakawa","doi":"10.1016/j.cattod.2025.115337","DOIUrl":null,"url":null,"abstract":"<div><div>Simple metal oxides exhibit noticeable catalytic activity in methane conversion reactions. However, their catalytic role in the selective activation of CH<sub>4</sub> to more valuable products (CO, H<sub>2</sub>, olefins) is often masked by the highly oxidative reaction conditions and by complex catalyst formulations. Transient studies of the direct interaction of CH<sub>4</sub> with simple catalytic systems, including rare-earth (La<sub>2</sub>O<sub>3</sub>, Nd<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>), alkali-earth (MgO) and reducible (TiO<sub>2</sub>), reveal peculiar selectivity for different monometallic oxides. Rare-earth metal oxides show high initial activity towards partial oxidation products (CO, H<sub>2</sub>), while MgO possesses unique selectivity towards coupling products (C<sub>2</sub>H<sub>6</sub> and C<sub>2</sub>H<sub>4</sub>) with remarkable activity in dehydrogenation reactions. A continuous supply of lattice oxygen species for the selective oxidation of CH<sub>4</sub> to CO is provided by TiO<sub>2</sub>, which can effectively prevent accumulation of C deposits. The results indicate the roles played by the metal oxide materials and provide a basis for rational design of catalysts and reaction conditions for the selective conversion of CH<sub>4</sub>.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"455 ","pages":"Article 115337"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001555","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Simple metal oxides exhibit noticeable catalytic activity in methane conversion reactions. However, their catalytic role in the selective activation of CH4 to more valuable products (CO, H2, olefins) is often masked by the highly oxidative reaction conditions and by complex catalyst formulations. Transient studies of the direct interaction of CH4 with simple catalytic systems, including rare-earth (La2O3, Nd2O3, Y2O3), alkali-earth (MgO) and reducible (TiO2), reveal peculiar selectivity for different monometallic oxides. Rare-earth metal oxides show high initial activity towards partial oxidation products (CO, H2), while MgO possesses unique selectivity towards coupling products (C2H6 and C2H4) with remarkable activity in dehydrogenation reactions. A continuous supply of lattice oxygen species for the selective oxidation of CH4 to CO is provided by TiO2, which can effectively prevent accumulation of C deposits. The results indicate the roles played by the metal oxide materials and provide a basis for rational design of catalysts and reaction conditions for the selective conversion of CH4.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.