All-in-one design and fabrication of vacuum insulation panels for ultra-efficient pipeline thermal management

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Zhou Chen , Jifan Miao , Hui Chen , Hongfeng Li , Qing Wang , Haixia Zhang , Yong Yang
{"title":"All-in-one design and fabrication of vacuum insulation panels for ultra-efficient pipeline thermal management","authors":"Zhou Chen ,&nbsp;Jifan Miao ,&nbsp;Hui Chen ,&nbsp;Hongfeng Li ,&nbsp;Qing Wang ,&nbsp;Haixia Zhang ,&nbsp;Yong Yang","doi":"10.1016/j.applthermaleng.2025.126501","DOIUrl":null,"url":null,"abstract":"<div><div>Effective thermal insulation is vital for minimizing heat loss in high-temperature pipeline systems. Conventional insulation materials, such as glass wool and polyurethane (PU) foam, are limited by high thermal conductivities (0.023–0.04 W/(m·K)) and bulky structures. Here, we introduce an all-in-one design and fabrication approach for special-shaped vacuum insulation panels (VIPs), achieving an ultra-low thermal conductivity of 0.0017 W/(m·K). The developed process enables the production of cylindrical VIPs for pipeline insulation while effectively mitigating thermal bridging effects. A double-layer VIP structure with staggered gaps further enhances insulation performance, significantly reducing heat loss. Infrared imaging confirms superior thermal efficiency, with outer surface temperatures as low as 9.5 °C, compared to 35 °C for traditional glass wool insulation. This scalable approach offers a promising solution for ultra-efficient pipeline thermal management.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"273 ","pages":"Article 126501"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125010932","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective thermal insulation is vital for minimizing heat loss in high-temperature pipeline systems. Conventional insulation materials, such as glass wool and polyurethane (PU) foam, are limited by high thermal conductivities (0.023–0.04 W/(m·K)) and bulky structures. Here, we introduce an all-in-one design and fabrication approach for special-shaped vacuum insulation panels (VIPs), achieving an ultra-low thermal conductivity of 0.0017 W/(m·K). The developed process enables the production of cylindrical VIPs for pipeline insulation while effectively mitigating thermal bridging effects. A double-layer VIP structure with staggered gaps further enhances insulation performance, significantly reducing heat loss. Infrared imaging confirms superior thermal efficiency, with outer surface temperatures as low as 9.5 °C, compared to 35 °C for traditional glass wool insulation. This scalable approach offers a promising solution for ultra-efficient pipeline thermal management.
用于超高效管道热管理的真空保温板的一体化设计和制造
有效的隔热材料对于最大限度地减少高温管道系统的热损失至关重要。玻璃棉和聚氨酯(PU)泡沫等传统隔热材料受限于高导热系数(0.023-0.04 W/(m-K))和笨重的结构。在这里,我们介绍了一种集设计和制造于一体的异形真空绝热板(VIP)方法,实现了 0.0017 W/(m-K) 的超低导热系数。所开发的工艺能够生产出用于管道隔热的圆柱形 VIP,同时有效减轻热桥效应。具有交错间隙的双层 VIP 结构进一步提高了隔热性能,显著减少了热损失。红外线成像证实了其卓越的热效率,外表面温度低至 9.5 °C,而传统玻璃棉隔热材料的外表面温度为 35 °C。这种可扩展的方法为超高效管道热管理提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信