Magnetite/reduced graphene oxide composites: A sustainable strategy for selenium immobilization and improved corn growth

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Khatereh Sarmasti , Ahmad Golchin , Amir Bostani , Mehran Misaghi
{"title":"Magnetite/reduced graphene oxide composites: A sustainable strategy for selenium immobilization and improved corn growth","authors":"Khatereh Sarmasti ,&nbsp;Ahmad Golchin ,&nbsp;Amir Bostani ,&nbsp;Mehran Misaghi","doi":"10.1016/j.chemosphere.2025.144424","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effectiveness of magnetite/reduced graphene oxide (MRGO) in immobilizing selenium (Se) in contaminated soils and its impact on corn (<em>Zea mays</em>) growth and nutrient uptake. A factorial experiment was conducted in a completely randomized design with three replications under greenhouse conditions. Soil samples were contaminated with sodium selenate at Se concentrations of 0, 2, 4, 8, 16, and 32 mg/kg, equilibrated for two months, and subsequently treated with MRGO at 0, 0.25, 0.5, and 1 %, followed by a three-month incubation period. Corn plants were then cultivated from the seedling stage to the vegetative phase, and growth parameters, along with Se and nutrient concentrations in roots and shoots, were analyzed. MRGO significantly enhanced Se immobilization, increasing retention from 62–71 % to 82–90 % at 1 % MRGO. Se exhibited a biphasic effect on plant growth, promoting growth at 2 mg/kg but inducing toxicity at concentrations exceeding 4 mg/kg, leading to reduced biomass and nutrient uptake. MRGO mitigated Se toxicity by lowering Se accumulation in roots and shoots. However, in Se-free soils, higher MRGO levels negatively affected plant growth, likely due to nutrient adsorption. Trends in potassium (K), iron (Fe), and zinc (Zn) mirrored plant growth, peaking at 2 mg/kg Se and 1 % MRGO, whereas P (P) exhibited an inverse root-shoot distribution. These findings underscore MRGO's potential for Se immobilization in contaminated soils, improving plant performance at optimal Se levels. However, its application in Se-deficient soils requires careful management to prevent nutrient depletion (P, K, Zn, and Fe) and long-term declines in soil fertility.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"378 ","pages":"Article 144424"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525003674","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effectiveness of magnetite/reduced graphene oxide (MRGO) in immobilizing selenium (Se) in contaminated soils and its impact on corn (Zea mays) growth and nutrient uptake. A factorial experiment was conducted in a completely randomized design with three replications under greenhouse conditions. Soil samples were contaminated with sodium selenate at Se concentrations of 0, 2, 4, 8, 16, and 32 mg/kg, equilibrated for two months, and subsequently treated with MRGO at 0, 0.25, 0.5, and 1 %, followed by a three-month incubation period. Corn plants were then cultivated from the seedling stage to the vegetative phase, and growth parameters, along with Se and nutrient concentrations in roots and shoots, were analyzed. MRGO significantly enhanced Se immobilization, increasing retention from 62–71 % to 82–90 % at 1 % MRGO. Se exhibited a biphasic effect on plant growth, promoting growth at 2 mg/kg but inducing toxicity at concentrations exceeding 4 mg/kg, leading to reduced biomass and nutrient uptake. MRGO mitigated Se toxicity by lowering Se accumulation in roots and shoots. However, in Se-free soils, higher MRGO levels negatively affected plant growth, likely due to nutrient adsorption. Trends in potassium (K), iron (Fe), and zinc (Zn) mirrored plant growth, peaking at 2 mg/kg Se and 1 % MRGO, whereas P (P) exhibited an inverse root-shoot distribution. These findings underscore MRGO's potential for Se immobilization in contaminated soils, improving plant performance at optimal Se levels. However, its application in Se-deficient soils requires careful management to prevent nutrient depletion (P, K, Zn, and Fe) and long-term declines in soil fertility.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信