Genetically encoded tool for manipulation of ΔΨm identifies its role as the driver of ISR induced by ATP synthase dysfunction

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mangyu Choe , Alex E. Ekvik , Gretchen Stalnaker , Hijai R. Shin , Denis V. Titov
{"title":"Genetically encoded tool for manipulation of ΔΨm identifies its role as the driver of ISR induced by ATP synthase dysfunction","authors":"Mangyu Choe ,&nbsp;Alex E. Ekvik ,&nbsp;Gretchen Stalnaker ,&nbsp;Hijai R. Shin ,&nbsp;Denis V. Titov","doi":"10.1016/j.chembiol.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial membrane potential (ΔΨm) is one of the key parameters controlling cellular bioenergetics. Investigation of the role of ΔΨm in live cells is complicated by a lack of tools for its direct manipulation without off-target effects. Here, we adopted the uncoupling protein UCP1 from brown adipocytes as a genetically encoded tool for direct manipulation of ΔΨm. We validated the ability of exogenously expressed UCP1 to induce uncoupled respiration and lower ΔΨm in mammalian cells. UCP1 expression lowered ΔΨm to the same extent as chemical uncouplers but did not inhibit cell proliferation, suggesting that it manipulates ΔΨm without the off-target effects of chemical uncouplers. Using UCP1, we revealed that elevated ΔΨm is the driver of the integrated stress response induced by ATP synthase inhibition in mammalian cells.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 4","pages":"Pages 620-630.e6"},"PeriodicalIF":6.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625000972","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial membrane potential (ΔΨm) is one of the key parameters controlling cellular bioenergetics. Investigation of the role of ΔΨm in live cells is complicated by a lack of tools for its direct manipulation without off-target effects. Here, we adopted the uncoupling protein UCP1 from brown adipocytes as a genetically encoded tool for direct manipulation of ΔΨm. We validated the ability of exogenously expressed UCP1 to induce uncoupled respiration and lower ΔΨm in mammalian cells. UCP1 expression lowered ΔΨm to the same extent as chemical uncouplers but did not inhibit cell proliferation, suggesting that it manipulates ΔΨm without the off-target effects of chemical uncouplers. Using UCP1, we revealed that elevated ΔΨm is the driver of the integrated stress response induced by ATP synthase inhibition in mammalian cells.

Abstract Image

操纵ΔΨm的遗传编码工具确定其作为ATP合酶功能障碍诱导的ISR驱动因素的作用
线粒体膜电位(ΔΨm)是控制细胞生物能量学的关键参数之一。由于缺乏不产生脱靶效应的直接操纵工具,对ΔΨm在活细胞中的作用的研究变得复杂。在这里,我们采用来自棕色脂肪细胞的解偶联蛋白UCP1作为直接操纵ΔΨm的遗传编码工具。我们验证了外源表达的UCP1在哺乳动物细胞中诱导解偶联呼吸和降低ΔΨm的能力。UCP1表达降低ΔΨm的程度与化学解偶联剂相同,但不抑制细胞增殖,这表明它操纵ΔΨm而没有化学解偶联剂的脱靶效应。利用UCP1,我们发现ΔΨm升高是哺乳动物细胞中ATP合酶抑制诱导的综合应激反应的驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信