Nicholas Kwiatkowski , Tong Liang , Zhe Sha , Philip N. Collier , Annan Yang , Murugappan Sathappa , Atanu Paul , Lijing Su , Xiaozhang Zheng , Robert Aversa , Kunhua Li , Revonda Mehovic , Christina Kolodzy , Susanne B. Breitkopf , Dapeng Chen , Charles L. Howarth , Karen Yuan , Hakryul Jo , Joseph D. Growney , Matthew Weiss , Juliet Williams
{"title":"CDK2 heterobifunctional degraders co-degrade CDK2 and cyclin E resulting in efficacy in CCNE1-amplified and overexpressed cancers","authors":"Nicholas Kwiatkowski , Tong Liang , Zhe Sha , Philip N. Collier , Annan Yang , Murugappan Sathappa , Atanu Paul , Lijing Su , Xiaozhang Zheng , Robert Aversa , Kunhua Li , Revonda Mehovic , Christina Kolodzy , Susanne B. Breitkopf , Dapeng Chen , Charles L. Howarth , Karen Yuan , Hakryul Jo , Joseph D. Growney , Matthew Weiss , Juliet Williams","doi":"10.1016/j.chembiol.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div><em>CCNE1</em> amplification drives aberrant CDK2-cyclin E1 activity in cancer. Despite activity of CDK2 inhibitors, their therapeutic margins are limited by poor CDK selectivity. We developed a degrader with high selectivity for CDK2 over CDK1 that also unexpectedly led to cyclin E1 degradation and potent and complete suppression of RB phosphorylation at concentrations with low CDK2 occupancy and negligible CDK1 degradation. Co-depletion of CDK2 and cyclin E1 also resensitized palbociclib-adapted breast cancer cells to cell cycle blockade. Overall, the improved potency and selectivity of the degrader for CDK2 over small-molecule inhibitors drives antiproliferative activity with greater specificity for <em>CCNE1</em><sup><em>amp</em></sup> cancer cells and RB dependency. Using an orally administered degrader, we demonstrate deep and sustained RB pathway suppression, which is needed to induce stasis in <em>CCNE1</em><sup><em>amp</em></sup> tumors. These results highlight the potential of this modality to target CDK2 potently and selectivity in this biomarker-defined patient population with high unmet need.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 4","pages":"Pages 556-569.e24"},"PeriodicalIF":6.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625000960","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CCNE1 amplification drives aberrant CDK2-cyclin E1 activity in cancer. Despite activity of CDK2 inhibitors, their therapeutic margins are limited by poor CDK selectivity. We developed a degrader with high selectivity for CDK2 over CDK1 that also unexpectedly led to cyclin E1 degradation and potent and complete suppression of RB phosphorylation at concentrations with low CDK2 occupancy and negligible CDK1 degradation. Co-depletion of CDK2 and cyclin E1 also resensitized palbociclib-adapted breast cancer cells to cell cycle blockade. Overall, the improved potency and selectivity of the degrader for CDK2 over small-molecule inhibitors drives antiproliferative activity with greater specificity for CCNE1amp cancer cells and RB dependency. Using an orally administered degrader, we demonstrate deep and sustained RB pathway suppression, which is needed to induce stasis in CCNE1amp tumors. These results highlight the potential of this modality to target CDK2 potently and selectivity in this biomarker-defined patient population with high unmet need.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.